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University o f  W ashington

Abstract

Essays on Inference in W eakly Identified M odels in M acroeconomics and Finance

Jun Ma

Chair o f  the Supervisory Committee:
Professor Charles R. Nelson 
Department o f  Economics

This dissertation is concerned with the implications o f  w eak identification in 

macroeconomics and finance: the risks o f  making spurious inferences, strategies for valid 

inference, and their economic implications. In the first essay I show that the standard 

estimation and /-test in the GARCH(1,1) model are spurious when the GARCH effect is 

w eakly identified, implying strong and significant persistence o f  volatility when in fact 

there is little. This spurious inference is partly attributed to the severely under-estimated 

standard error for the estimated GARCH effect. A strategy for valid inference is 

suggested and seems to give robust results for this case. In m y second essay I derive an 

analytical asymptotic variance matrix for the GARCH(1,1) M axim um  Likelihood 

Estimator and show that the Zero-Information-Limit Condition (ZILC) o f  Nelson and 

Startz (2007) holds, accounting for spuriously large /-statistics. In the third essay I 

propose a general approach to valid inference in weakly identified m odels based on a 

com mon linear approximation and show that this general test strategy succeeds in 

obtaining a correct size in the presence o f  weak identification. In the fourth essay I apply 

this valid test to evaluate a recent resolution o f  the equity premium puzzle based on a 

high level o f  persistence in consumption growth. M y results find little empirical 

evidence in support o f  this resolution.
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Chapter 1: Spurious Inference in the GARCH(1,1) Model When It Is 
Weakly Identified*

By Jun Ma, Charles R. Nelson and Richard Startz

1.1 Introduction

Capturing time-varying volatility is a key element in modeling time series data, 

especially for financial time series data. The ARCH (Autoregressive Conditional 

Heteroskedasticity) family, first proposed by Engle (1982), has been widely adopted 

to extract a latent volatility process and predict its future movement, especially since 

the generalization to the GARCH model by Bollerslev (1986). In allowing the 

conditional volatility to be linearly dependent upon both past squared shocks and the 

past conditional volatilities, GARCH type models can generate rich dynamics with 

few parameters. Indeed, the GARCH(1,1) is usually sufficient to provide a good fit 

(see Bollerslev, Chou and Kroner (1992)).

Nelson and Startz (2007) have shown that when identification o f one parameter is 

conditional on another inference for the former will be misleading if  the 

Zero-Information-Limit Condition (hereafter ZILC) holds. In models where ZILC 

holds, standard errors tend to be understated when the identifying parameter is small 

enough, no matter how large a given sample size. Examples include the ‘weak 

instrument’ problem, ARMA models with near cancellation, and certain nonlinear 

regression models. In this paper we show that ZILC holds in the GARCH(1,1) 

model and that estimated standard errors are too small when the ARCH effect is o f the 

size commonly reported in the empirical literature. As a result, the actual size of the 

/-test for the GARCH coefficient is far too great, rejection of the true null hypotheses 

occurring too often. Thus, researchers unaware of this spurious effect may be 

tempted to infer that the persistence due to the GARCH effect is strong when in fact it 

is absent.

* A Paper based on this chapter has been published on the Studies in Nonlinear Dynamics <& Econometrics: Vol. 11: 
NO. 1, Article 1.
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As a response to the danger of spurious inference we propose an empirical 

strategy based on a pure ARCH(g) approximation to GARCH(1,1) and show how it 

applies to real datasets.

This paper is organized in the following way: Section 1.2 demonstrates that ZILC 

holds in the GARCH(1,1) model. Section 1.3 presents evidence by Monte Carlo 

experiments to document the underestimation of standard errors when identification 

of the GARCH effect is weak. Section 1.4 proposes the empirical strategy and 

evaluates its validity. Section 1.5 presents the results for some real datasets. 

Section 1.6 concludes this paper.

1.2 The Zero-Information-Limit Condition in the GARCH(1,1) Model

The archetypal GARCH( 1,1) model may be written1:

Note that ht is the conditional variance and is driven by past realizations o f et with 

added persistence determined by p . In the case /5 = 0 the model reduces to the 

pure ARCH(l) model, and in the case a  =0  the data are homoskedastic and the 

GARCH effect p  is not identified. Following the literature, we impose the 

parameter restrictions a> > 0 and | a  + p  |< 1 so that the underlying process is 

strictly stationary with a finite second moment. Note that the asymptotic theory of 

GARCH(1,1) does not critically depend upon the latter inequality restriction (e.g., see 

Lumsdaine (1996), Jensen and Rahbek (2004)), but we impose this restriction to have 

a finite unconditional variance for e, and evaluate its estimation performance.

Following the standard treatment in Hamilton (1994), we present the following 

ARMA(1,1) representation for the GARCH(1,1) process:

1 The mean o f equation (1.1) is set to be zero without loss of generality since the information matrix is 
block-diagonal, as shown by Bollerslev (1986).

(1.1)

ht -a> + a  St-1 +P ■ ht_x (1.2)
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S i2 =G) + (a  + P ) '£ t_ 2 + Wt -  fi W,t - 1 (1.3)

The innovation wt —e 2- h t - h t\{-^L=)2 -1 ] is a Martingale Difference Sequence
VA«

(MDS) with a time-varying conditional variance. Thus the GARCH(1,1) process 

turns out to be a particular ARMA(1,1) process with (a + fi)  being the AR 

coefficient and fi being the MA coefficient, though the shocks are non-normal and 

heteroskedastic.

Nelson and Startz (2007) show that ZILC holds in an ARMA(1,1) model as the 

absolute difference between the AR coefficient and MA coefficient approaches zero. 

If ZILC applies to the GARCH(1,1) model as well, the reported standard error o f the

MLE estimator /? will tend to be smaller than the hue asymptotic standard deviation 

when the identifying parameter a  is small. To check whether ZILC holds one 

needs the asymptotic variance but no closed form expression exists in the literature. 

Ma (2007) (Chapter 2 of this dissertation) derives an analytical approximation for the 

case that a  is small and an exact expression that may be evaluated by stochastic 

simulation for comparison. Based upon Ma’s result it is straightforward to show that

the inverse of the asymptotic variance of/?, the ‘information’ measure o f Nelson and 

Startz (2007), goes to zero as a  approaches zero, i.e., ZILC holds:

lim /-(< a ,a ,/5 )  = 0 (1.4)
a->0 P

Appendix A.1 gives a formal proof of (1.4) based upon M a’s (2007) analytical 

result. Furthermore, a  has the same issue as /?, since it is also subject to ZILC. 

Indeed, Ma’s approximation establishes that these two estimates are highly negatively 

correlated when a  is small; Appendix A.2 illustrates these algebraic results using 

the special case o f ft = 0. Asymptotic theory does hold in the GARCH as sample
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size grows, but for any given sample size one can find a value o f a  small enough 

that the ZILC effect on standard errors will be apparent Finally, the identifying 

parameter a  itself is still well identified, in the sense that ZILC does not hold.

1.3 Evidence of Spurious Inference from Monte Carlo Experiments2

We implement a series o f Monte Carlo (MC) experiments to investigate whether 

spurious inference occurs when the GARCH(1,1) model is weakly identified. There 

have been a few papers which examine the performance of GARCH estimates in a 

finite sample through MC experiments but the focus has been on the well identified 

case; see Hong (1988), Bollerslev and Wooldridge (1992), Lumsdaine (1995), and 

Fiorentini, Calzolari and Panattoni (1996). In the empirical literature it is standard 

practice to rely on estimated standard errors for the GARCH parameter to make the 

inference that f  is non-zero and in the typical case large with a small confidence 

interval. Thus, we are interested here in the potential for spurious inference when 

there is in fact no GARCH effect, or it is only moderate.

1.3.1 Inference when there is no GARCH effect

In this sequence of MC experiments, data is simulated from the GARCH(1,1) process 

defined by equation (1.1) and (1.2) with three sets o f parameter values:

'o f (I ' f 1 ' f 1 '
a = 0.01 5 0.05 0.10

0 , ,0 ,

The choices o f a  are motivated by the estimates typically reported in the empirical 

literature; some classical examples are Bollerslev (1987), Baillie and Bollerslev (1989)

2 The estimation procedure is implemented by our own MATLAB codes, independent from the GARCH Toolbox 
in MATLAB. We tried both the restricted code which restricts the estimates to be positive through an exponential 
transformation and the unrestricted code which does not have this restriction. Similar results are obtained in both 
cases. Here we only report the results from the unrestricted code. Codes in both cases are available from the 
authors upon request. Our major findings can also be replicated in both Eviews 5.1 and the SPLUS Finmetrics 
Library 1.0.
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and Engle, Ng, and Rothschild (1990). Since p  is 0 in these experiments there is 

no GARCH effect and the process is actually an ARCH(l). The scale parameter <a 

is normalized to be unity. For each set o f parameter values, we have three sample 

sizes T = 500, 1000 and 5000, respectively. For all 9 experiments, 1000 simulated 

paths of sample data o f length T  are generated. Table 1.1 gives the empirical sizes of 

/-test, Likelihood Ratio (LR) test, Lagrange Multiplier (LM) test at the nominal 5% 

level for all parameters and the frequency Schwarz Information Criterion (SIC) 

chooses GARCH(1,1) over ARCH(l).

In Table 1.1, when the ARCH coefficient is 0.01 the actual size of /-test for fi is 

nearly 50% even for a large sample size. However, for sufficiently large a  , and for 

sufficiently large sample size, the size distortion is greatly reduced. Note that the 

size distortion for &> is as large as that for P . Size distortion for a  is not as large 

as for p , although not completely absent.

Fortunately for practitioners, the LR and LM tests perform much better than the 

/-test. The former indicates that the weakly identified model does not fit much better 

than the restricted model, hence little improvement in the likelihood value. The 

better performance of the LM test can be traced to the fact that it is calculated under 

the restriction on the weakly identified parameter; see Zivot, Startz and Nelson (1998) 

for discussion of this in the weak instrument case. Ma and Nelson (2007) are 

exploring approaches to obtaining valid tests based on what would be the 

Anderson-Rubin test in a linear approximation to a weakly identified model where 

ZILC holds. Note that the LM test in this context is a chi-square test for serial 

correlation in the squared residuals from the constrained model, in this case ARCH(1). 

SIC performs well in model selection which is consistent with findings on lag 

selection reported by Lutkepohl (1991).

To understand why the /-statistic does such a poor job, we separately examine the 

denominator and the numerator. In Table 1.2 we compare the median o f the

estimated standard error of (i in the MC sample with the actual standard deviation 

of p  in the MC sample as well as with two computed approximations to the
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asymptotic standard deviations, one using Ma’s analytical approximation and the 

other evaluated by stochastic simulation; see Ma (2007) for details. This comparison

is for the fixed sample size T  = 1000. The standard error o f /? is indeed severely 

underestimated. For example, when a  = 0.01, the median estimated standard error 

of p  is only about one tenth o f the true (asymptotic) standard error. As pointed out 

by Nelson and Startz (2007) for the ARMA case, this is more surprising since 

variation in f3 is bounded by the stationarity requirement although the asymptotic 

formula does not take this into account. However, the estimated standard error for 

P is so much underestimated that it is well below the actual standard deviation, 

being about half of it. Even when a  = 0.10 the median estimated standard error of 

P  is still well below both the asymptotic standard error and the actual standard 

deviation. While m has exactly the same issue, this is not true for a  .

We present the histogram of p  in Figure 1.1 from the experiment when 

co = 1, a  = 0.01, p  = 0 and sample size T=  1000, corresponding to the first three rows 

in Table 1.2. An interesting “pile-up” phenomenon appears which reflects an 

upward bias in /? : the median of (3 is 0.3207. At the same time m is downward 

biased with the median being 0.6889.

We also plot the estimated standard error of (3 against (3 in Figure 1.2. It is

evident that there is a strong negative correlation between the absolute value o f /? 

and its standard error. Nelson and Startz (2007) (Chapter 3 o f this dissertation) show 

that a general property o f models in which ZILC holds is dependence between 

absolute size o f the numerator and denominator o f the /-statistic, the sign o f  the 

correlation determining whether the /-test is under- or over-sized. In this case, large 

values of p  are accompanied often by very small estimated standard errors, and vice 

versa, so there is an excess of large /-statistics and the test size is too great.

Another finding in the MC experiment is that very often the individual Profile 

Log-Likelihood Function (PLLF) displays multiple maxima (See Figure 1.3 for two
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typical examples). The PLLF is obtained by maximizing the log-likelihood function 

(LLF) subject to pre-specified values o fp . This suggests that practitioners should 

be aware of the possibility o f getting stuck in a local maximum in lieu o f a global one 

when relying on a traditional gradient-based optimum searching algorithm. In our 

experiment we start optimizations with various initial values to avoid this pitfall. 

Furthermore, the PLLF varies little as the parameter is varied. Interestingly, 

Figlewski (1997) finds that it is difficult to get the algorithm to converge when 

estimating GARCH(1,1) for monthly stock return because the LLF is quite flat.

1.3.2 When there is a moderate GARCH effect

It is important to note that ZILC holds whenever the ARCH coefficient a  is small, 

regardless of the magnitude o f true f ) . In this sequence o f MC experiments we 

simulate data from the GARCH(1,1) process defined by equation (1.1) and (1.2) with 

moderate GARCH effect:

M
1  N 1  ^

a = 0.01 9 0.05 9 0.10

,0 -5 . ,0.5 , ,0.5 ,

The sample size is fixed at 1000 and the number o f simulation is 1000. Table 1.3 

presents our major findings. No major difference has been found compared with 

Table 1.1 and 1.2. The standard error of f3 is underestimated, leading to a very

large size distortion o f t-test. Besides, P is upward biased (See Figure 1.4) and the 

median is 0.6834. The LR and LM test again perform much better than t-test and 

SIC is quite accurate in model selection.

1.3.3 Persistence in the GARCH(l.l) model

In the GARCH(1,1) model (a + fi) determines how long a random shock to
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volatility persists. To see this we rewrite equation (1.2) to obtain its AR 

representation:

ht -  co + (a  + fi)ht_x +awt_x (1.5)

Where w(_1 = e , _ -  /i(_,. In empirical applications it is often this persistence in 

volatility that is o f great interest and the magnitude of it usually makes a significant 

difference in terms o f economic implications. For example, Bansal and Yaron (2000) 

present a potential resolution of the equity premium puzzle based on a large value o f 

(a+  fi) .  So it is important to note that (a  + fi) is upward biased and has an 

underestimated standard error when a  is small. Figure 1.5 and 1.6 give the 

histograms of (a  + fi) with parameter values co - l , a  = 0.01, fi = 0 

and co = 1, a  =0.01, fi - 0 .5 ,  respectively, and T=  1000. Table 1.4 reports the size 

distortion of the t-test for (a  + /3) under both cases of no GARCH and moderate 

GARCH effect when the model is weakly identified, for the fixed sample size T = 

1000. The size distortion of (a  + fi)  is comparable to that of/9. Table 1.4 also 

gives the power o f i-test for the Integrated GARCH (IGARCH) process3. Notice that 

the power is very small when a  is small. Furthermore, given the same a  , the 

power is even smaller when the true fi increases.

1.3.4 Forecasting performance o f  the GARCH(l.l) model when it is weakly 
identified

Due to its practical interest, here we evaluate both-the in-sample and out-of-sample 

forecasting performance of the GARCH(1,1) model when it is weakly identified. 

The in-sample forecasting is simply the estimated volatility which can be easily 

computed once the parameters estimates are obtained. Out-of-sample forecasting for 

horizon k  is also straightforward as shown below:

3 The test is asymptotically valid since the GARCH estimates have regular properties even for an IGARCH 
process. See Lumsdaine (1995,1996) and D. Nelson (1990).
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Et [ht+h ]= © £  (« + p y ' + (a + p y h ht (1.6)
i=0

And lim £,[/j,+„] = -— given | a + / 5 | < l .
A->oo 1 _  a  _  p

We work on the MC experiment of co = l ,a  = 0.01,/i = 0,T  = 1000 . Since the 

ARCH(l) model is correctly specified given /5 = 0, we use the ARCH(l) model as a 

benchmark. At the same time, we estimate the constant unconditional variance as

1 T
another benchmark: CONST.h = — ̂  s]  .

T t=i

Figure 1.7 presents a typical comparison o f the in-sample forecasted volatility by 

three methods along with the true volatility (the illustrated sample period is chosen to 

be short to make the difference clear). The estimated volatility by the ARCH(l) and 

the constant unconditional variance measure resemble the underlying volatility 

process quite well, indicating a nearly homoskedastic process. However, the 

estimated volatility by the GARCH(1,1) displays a very persistent pattern. The 

out-of-sample comparison given by Figure 1.8 demonstrates the same idea.

We compute the Root Mean Squared Error (RMSE) across MC samples to 

summarize the predicting accuracy for various methods. Table 1.5 gives the 

in-sample RMSE and out-of-sample RMSE for GARCH(1,1), ARCH(l) and the 

constant unconditional variance measure. The in-sample comparison seems to be 

counter-intuitive to the common sense that the in-sample fitting should be always 

better with a more general model. The analogy to a linear estimation explains the

puzzle. The forecasting m easu rey  (hl - h , ) 2 here we use corresponds in a linear 

estimation to the Explained Sum of Squares (ESS) not the Sum of Squared Residuals 

(SSR), whose counterpart is ^ (e 2 ~ h ,)2 instead. As the more general model

decreases ^ {e] - ht ) , ^ ( h t - h t)2 , however, has to increase, given the fixed
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Total Sum of Squares (TSS) ^  (s f -  ht )2 :

Z < £.2 - * . ) ! = ! ( * ,  - * . ) 2 + 5 > , ! - * , ) ! + 2 £ ( * ,  - * , )  (1.7)

Where, the term ^ (A , - ht )(ef - h t ) would be zero by construction in a linear

context. In this nonlinear context, the value of this term is also close to zero in our 

MC experiment.

As for the out-of-sample forecasting performance, the GARCH(1,1) is also worse 

than both the ARCH(1) and constant variance measure for short horizons but all o f 

them have almost the same performance for long enough horizons, indicating a well

identified. This is in contrast to Starica (2003) who investigate the forecasting 

performance of GARCH(1,1) model in the S&P 500 index return data and finds that it 

does a poor job in predicting the long run volatility during the period o f his study. 

However, we want to point out that our MC experiments are implemented assuming a 

constant unconditional variance which may fail to hold for real data.

1.4 An Empirical Strategy for Detecting ZILC in the GARCH(1,1) Estimation

As suggested by our findings, a preliminary step to see whether one specific 

GARCH(1,1) estimation is subject to ZILC is to take a look at a  and the sample 

size since as a  or sample size increases the ZILC issue becomes less severe. To 

facilitate this procedure, we provide a reference table (Table 1.6) for practitioners. 

We note that either sample size or the ARCH effect must be larger than generally 

encountered in the empirical literature for the ZILC problem to become moot.

In our approach to GARCH(1,1) estimation, when a  and the sample size are in 

the left upper area o f Table 1.6 we propose to estimate the ARCH(g) process and 

compare with the GARCH(1,1) estimation to see if there is any large discrepancy in 

the implied autocorrelation function (ACF) for ht as a practical strategy for

estimated unconditional variance even when the model is weakly
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detecting a spurious result in estimating the weakly identified GARCH(1,1). The 

ARCHfy) process bears no ZILC concern since identification is not conditional on 

other parameters, as shown by its ARfy) representation:

s] = a 0 + a ls l l +  a 2sf_2 +  • • • +  a q£?_q + wt (1 .8)

The GARCH(1,1) can be represented by an ARCH(oo) process theoretically:

s? -a> + a  £t-12 +/3 ■ h,_x +  wt
®  2 n  2 n k - l  2 0 *9 )

—----------YCL 'S t - 1 '\rC t(j'£ t - 2 + .. .  +  # / /  *S t-k  +
1 - p  H H

In practice, an ARCH(^) process with sufficiently large lag q is able to approximate 

the GARCH( 1,1) process very well. We verify this through a MC experiment.

We generate 1000 data paths o f sample size T = 1000 by equation (1.1) and (1.2) 

with true parameters values co = 1, a  -  0.3, (5X = 0.6. Given reference Table 1.6, this 

GARCH(1,1) process is well identified. This is also confirmed by the estimation 

result: the actual size of t-test for (3 is 5.1% for nominal size 5%. Besides, [3 is 

around its true value and there is no upward bias. For each data path, we estimate 

both the GARCH(1,1) and ARCHfy). To choose a proper lag q for the ARCHfyr), we 

rely on both the SIC and LM test. We estimate the ARCH(q) up to lag 10 and find 

an optimal lag where SIC is minimal and LM test is not significant at 5% level.

After estimations, we compute and compare the theoretical ACF o f the 

conditional variance implied by GARCH(1,1) and ARCH(g) estimates. Equation 

(1.5) shows that (a + fi)  fully determines the persistence of the conditional variance

process in the GARCH(1,1). However, for the ARCHfy), the implied conditional 

variance has the ARMAfy, q-1) representation:
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(1 -  a xL  - . . .  -  a pV  ){h, -  ------- ^ -------- ) = (i _ (_ ^ 1 )Z, _ _  (_ % L )L p- i
1 - a l - . . . - a  a , a ,

(1.10)

We compare the median of theoretical ACF for the conditional variance across MC 

sample between the GARCH(1,1) and ARCH(g) estimations. We confirm that the 

ARCH(^) can approximate the GARCH(1,1) fairly well (see Figure 1.9). In the next 

section we examine some real datasets and experiment with this approach.

1.5 Issues in Real Data Analysis and the Example of S&P 500 Index Returns

Numerous applications of GARCH(1,1) appear in the literature and some 

generalizations are as follows. Very frequently a large value of fi  is reported, 

accompanied by a small standard error and large 1-statistic. It is not uncommon to 

see a small a  along with a not very large sample size, the combination well in the 

area o f Table 1.6 that suggests the danger o f spurious inference. We cannot provide

an explanation of the very frequently reported large values of f i  solely based on the 

results in this paper (the upward bias found in our Monte Carlo experiments are not 

sufficiently extreme). Dueker (1997) suggests that this may be due to the leptokurtic 

characteristic of the real data. Other studies such as Hamilton and Susmel (1994) 

and Cai (1994) attribute this to abrupt regime shifts of the unconditional variance.

In Engle, NQ Rothschild (1990), they estimate a GARCH(l,l)-mean model for 

monthly value-weighted stock mdex return data from August 1964 to November 1985.
A

The number of observations is 256 and a  is slightly above 0.05. In contrast, f i  is 

quite large along with a very pronounced f-statistic. Their GARCH point estimates 

along with the f-ratios (in parentheses) are:

® = 1.9348(1.68) a  =0.0518(1.79) £  = 0.8461(12.6)

In the first of two examples from Bollerslev (1987), the GARCH(1,1) estimation of
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daily U.S. dollar versus the British Pound exchange rate return data from March 1, 

1980 to January 28, 1985 has the following point estimates and estimated standard 

errors (in parentheses):

cb = 0.96 -10-6 (0.46 -HT6) a  = 0.057(0.017) p  = 0.921(0.023)

And the GARCH(1,1) estimation o f monthly S&P 500 index return data from 1947 

January to 1984 September is (standard errors are in parentheses):

<0 = O.17 1O~3(O.13 1O'3) a  = 0.074(0.045) /? = 0.768(0.148)

The former estimation gives a  as small as 0.057 with a sample size 1245. At 

the same time, p  is very large and its estimated standard error is very small. The 

second estimation gives a slightly larger a  and a large P  still, but with a much 

smaller sample size 453, and in this case neither <a nor a  seems to be significantly 

different from zero at 5% level by a traditional (-test4.

We take the monthly S&P 500 index return data as an example o f  our 

investigation. This dataset is obtained from the Eviews 5.1 DRI Database. We 

restrict our investigation to the sample period from 1947 January to 1984 September 

to make our estimation result comparable to Bollerslev (1987). Since the monthly 

price data is obtained by averaging the daily prices, there is a significant first order 

moving average correlation in the first moment equation, which is well known as the 

“Working Effect” (see Working (I960)). Therefore, we first estimate the MA(1) 

process for the return level data in EVIEWS 5.1 and store the residuals:

c0 =0.005278(0.001901) §l =0.23694(0.052461)

4 The test o f a =0 is non-standard, e.g., see the comment in Bollerslev, Engle and D. Nelson (1994). Davies 
(1977, 1987), Hansen (1996), Beg, Silvapulle, Silvapulle (2001) and Andrews (2001) have provided detailed 
discussions.
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c0 is the constant in mean equation and 0X is the MA(1) coefficient. The White 

heteroskedasticity-consistent standard errors of estimates are in parentheses.

As suggested by Bollerslev (1988) as a routine check for the heteroskedasticity, 

the Ljung-Box test o f squared residuals at log 10 is computed to be 26.9637, which is 

significant at 5% level. We provide two GARCH(1,1) estimation results. One is 

from EVIEWS 5.1 by directly estimating the MA(1) -  GARCH( 1,1) model. The 

other one is obtained by fitting the residuals from the first moment equation into the 

GARCH(1,1) model defined by equation (1.1) and (1.2) using our MATLAB code. 

Estimation results are reported below. To account for possible misspecification of 

conditional distribution for real data, we report the robust standard errors proposed by 

Bollerslev and Wooldridge (1992):

EVIEWS

© = 0.16-10~3 (0.14 TO-3) a  =0.078(0.049) /? = 0.771(0.169)

MATLAB

<» = 0.16-10~3(0.14-10“3) a  =0.077(0.048) /? = 0.773(0.169)

These GARCH(1,1) estimations are quite similar to Bollerslev (1987) and all o f them

imply a persistent volatility process in that a +  ft  ~ 0.85. However, as we point out,

the estimation result under this circumstance is probably subject to ZILC. To make a 

comparison, we fit the residuals into the ARCH(^) model. To determine the optimal 

lag, we estimate the ARCH(^) up to lag 10 and then identify the optimal lag where 

SIC achieves a local minimum and LM test is not significant at 5% level5. This 

procedure results in the ARCH(5) and the estimation result is reported below. Again 

we report the robust standard errors proposed by Bollerslev and Wooldridge (1992):

5 We also use Akaike Information Criterion (AIC), which results in the same lag. When we look at the 6th up to 
10th ARCH estimates in the ARCH(10) estimation, none o f them is significant and the sum of them is negligibly 
small.
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a 0 =0.73 • 10”3 a l =0.041 d 2 = 0 a 3 =0.019 d 4 =0.008 d s =0.251 

(0.21 -10-3) (0.044) (0.173) (0.085) (0.035) (0.113)

The only significant lag is the 5th lag with a large magnitude. We find the same 

feature in the CRSP equal-weighted excess return data used in Kim, Nelson and Startz 

(1998). Oddly, Baillie and Bollerslev (1989) document a similar feature in the 

weekly exchange rate return data.

The theoretical ACF for the volatility process implied by both GARCH(1,1) and 

ARCH(5) estimates are given in Figure 1.10. The first order autocorrelation is 0.129 

implied by the ARCH(5) estimation in a sharp contrast to 0.850 implied by the 

GARCH( 1,1 Estimation. The estimated conditional variance {ht}]M from both

estimations also differ greatly (See Figure 1.11). The PLLF for the GARCH(1,1) 

estimation is given by Figure 1.12. The PLLF turns out to be bimodal.

We have also studied other datasets and the results are available upon request. 

Overall, a  is small but the sample size is not large enough to escape from the ZILC 

concern. Applying the proposed empirical strategy reveals a discrepancy between 

the theoretical ACF for the conditional variance implied by GARCH(1,1) and 

ARCH(<7). For example, Baillie and Bollerslev (1989) note that there is almost no 

GARCH effect in the monthly exchange rate return data. However, the GARCH(1,1) 

estimation of the monthly exchange rate return data o f U.S. dollar versus Japanese

Yen in the sample period from 1971 January to 2006 January results in a large P  

with a very small standard error. Instead the ARCH(g) approach finds little 

persistence and the PLLF o f the GARCH(1,1) is quite flat across the whole admissible 

region o f p .

1.6 Conclusion

We show that the Zero-Information-Limit Condition (ZILC) formulated by Nelson 

and Startz (2007) holds in the GARCH(1,1) model so that the model is weakly 

identified when the ARCH coefficient is small. We present a sequence o f Monte
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Carlo experiments and find that the GARCH estimate tends to have an underestimated 

standard error together with an upward bias when the ARCH coefficient is small even 

when sample size becomes very large, which results in a large size distortion o f the 

t-test. We propose an empirical strategy for detecting Z1LC and apply it to the real 

data. Our finding suggests that the concern raised by ZILC is quite relevant in 

empirical work.
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Table 1.1: Size of Various Tests at 5% Level and SIC in GARCH(1,1)

T=  500 II <—*
 

o
 

o
 

o II U\ o © o

True Parameter Values: co = 1, a  = 0.01, p  = 0

/-test for co 47.5% 45.2% 44.4%

/-test for a 21.8% 20.1% 20.8%

/-test for p 48.7% 45.6% 44.5%

LR test for p 13.0% 10.9% 8.3%

LM test for p 4.7% 5.2% 4.6%

SIC correct 5.7% 2.9% 1.0%

True Parameter Values: m = 1, a  = 0.05, p  = 0

/-test for co 38.3% 35.7% 16.8%

/-test for a 19.8% 18.2% 6.7%

/-test for p 41.3% 36.0% 17.5%

LR test for p 11.1% 9.9% 7.3%

LM test for p 4.7% 6.0% 4.3%

SIC correct 5.1% 2.9% 0.8%

True Parameter Values: a - \ , a  =0.10,/; = 0

/-test for m 27.3% 19.4% 7.9%

/-test for a 12.6% 10.2% 5.2%

/-test for p 30.6% 21.0% 8.5%

LR test for p 8.9% 8.4% 5.6%

LM test for p 4.5% 6.0% 4.5%

SIC correct 3.7% 2.3 0.1%
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Table 1.2: Estimated Standard Error versus True Asymptotic Standard Deviation 
True Parameters values: co = \ ,a  = 0.01,0.05,0.10,/5 = 0 , T -  1000

Identifying

Parameter

a

Model

Parameters

Estimates

Median of 

Estimated 

S.E.

Standard 

Deviation 

of Estimates 

in MC

Asymptotic 

SD using 

Ma approx.

Asymptotic 

SD evaluated 

numerically

co 0.3226 0.6161 3.1621 3.3549

0.01 a 0.0266 0.0381 0.0313 0.0332

P 0.3164 0.6175 3.1303 3.3192

ft) 0.3022 0.5532 0.6317 0.6712

0.05 a 0.0349 0.0401 0.0300 0.0374

P 0.2874 0.5402 0.5993 0.6364

(5 0.2686 0.4083 0.3164 0.3513

0.10 a 0.0408 0.0436 0.0282 0.0411

P 0.2394 0.3719 0.2817 0.3142
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Table 1.3: Inference for /5 in GARCH(1,1) with Moderate GARCH Effect 
True Parameters Values: a  = 1, a  = 0.01,0.05,0.10, /5 = 0.5, T = 1000

0.01

True value of a  

0.05 0.10

Standard Deviation o f /?

Asy. (analyt. approx.) 2.0400 0.3957 0.1887

Asy. (num. eval.) 2.0665 0.4237 0.2149

Std Dev in MC sample 0.5499 0.4485 0.2768

MC median S.E. 0.2566 0.2332 0.1818

Size of tests o f null hypothesis p  = 0.5 at nominal 5% level

/-test 42.7% 29.2% 16.1%

LR test 8.4% 7.0% 6.7%

LM test , 6.3% 5.4% 6.3%

SIC correct 2.7% 2.0% 1.3%
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Table 1.4: Inference for (a+ f i )  in GARCH( 1,1) 
Sample Size T= 1000

True parameters values: co = 1, a  = 0.01,0.05,0.10, /i = 0

Tme value of a

0.01 0.05 0.10

Standard Deviation of a  + f t

Asy. (analyt approx.) 3.1402 0.6303 0.3130

Asy. (num. eval.) 3.1302 0.6301 0.3114

Std Dev in MC sample 0.6101 0.5292 0.3667

MC median S.E. 0.3188 0.2851 0.2404

Size o f /-test o f null hypothesis a  + (j equals its true value at nominal 5% level

/-test 45.6% 35.2% 19.5%

Power of /-test for the hypothesis a  + /i = 1 at nominal 5% level

/-test 40.4% 56.1% 80.1%

True parameters values: co = 1, a  = 0.01,0.05,0.10, fi = 0.5

True value of a

0.01 0.05 0.10

Standard Deviation of a  + fi

Asy. (analyt. approx.) 2.0519 0.4067 0.1957

Asy. (num. eval.) 2.0262 0.3817 0.1741

Std Dev in MC sample 0.5439 0.4387 0.2638

MC median S.E. 0.2522 0.2273 0.1677

Size o f /-test o f null hypothesis a + f i  equals its true value at nominal 5% level

/-test 42.3% 29.2% 16.5%

Power of /-test for the hypothesis a + ft = 1 at nominal 5% level

/-test 25 . 1% 38 .9% 69 .8%
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Table 1.5: Forecasting Performance of GARCH(1,1) 
fi> = l ,a  = 0.01,/5 = 0 ,T  = 1000

RMSE = J j y  (Forecast*, -True.hi )2

GARCH(1,1) ARCH(l) Constant

In-sample RMSE

Whole period 0.0895 0.0678 0.0485

Out-of-sample RMSE for different horizons

Horizon = 1 0.0714 0.0486 0.0485

Horizon = 3 0.0634 0.0495 0.0495

Horizon = 6 0.0582 0.0494 0.0494

Horizon = 9 0.0553 0.0484 0.0485

Horizon =12 0.0541 0.0487 0.0487

Horizon = 24 0.0526 0.0493 0.0493

Horizon = 48 0.0498 0.0482 0.0482

Horizon = 96 0.0500 0.0490 0.0491

Table 1.6: The Reference Table for Practitioners - Empirical Size of i-test for f3 in 
the GARCH(1,1) Model, <y = 1,/5 = 0

Sample True value of a

Size 0.01 0.05 0.10 0.15 0.20 0.25 0.30

H II K> cn o 52.8% 45.7% 37.9% 29.7% 24.4% 21.4% 21.5%

T = 500 48.7% 41.3% 30.6% 22.0% - 17.4% 15.9% -

T = 1000 45.6% 36.0% 21.0% 15.1% 11.9% — —

T = 5000 44.5% 17.5% 8.5% 6.8% — -- —
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-1 -0.8 -0.6  -0.4  -0.2 0 0.2  0.4 0.6 0.8 1
GARCH Estimate

Figure 1.1: Histogram of f t  from the MC Experiment o f GARCH( 1,1) for 
<a = l, a  =0.01, >5 = 0 ,7  = 1000

-1 - 0.8 -0.6  - 0.4  -0.2 0  0.2 0.4 0.6 0.8 1
GARCH Estimate

Figure 1.2: Scatter Plot of Estimated S.E. of (3 against P  from the MC Experiment 
o f GARCH( 1,1) for m = \,ct = 0.01,/5 = 0 , r  = 1000
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Figure 1.3: Two Examples o f Profile LLF from the MC Experiment of 
GARCH(1,1) for co = 1, a  = 0.01, f> = 0, T = 1000
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100 -

GARCH Estimate

Figure 1.4: Histogram of P  from the MC Experiment of GARCH(1,1) for 
a  = 1, a  = 0.01, p  = 0.5, T = 1000

60

Sum of GARCH and ARCH Estimates

Figure 1.5: Histogram of (a  + /?) from the MC Experiment of GARCH(1,1) for
co = 1, a  = 0.01, p = 0, T = 1000
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Sum of GARCH and ARCH Estimates

Figure 1.6: Histogram of (a + /?) from the MC Experiment o f GARCH(1,1) for
-1 , a  = 0.01, /5 = 0.5, T = 1000
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H—  ARCH
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0.90 10 20 30 5040 60 8070 90 100

Figure 1.7: A Typical Comparison of the In-Sample Volatility Forecast from the MC 
Experiment o f GARCH(1,1) for m = 1, a  = 0.01, /5 = 0, T = 1000
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Figure 1.8: A Typical Comparison o f the Out-of-Sample Volatility Forecast from the 
MC Experiment of GARCH(1,1) for co = I, a  = 0.01, fi = 0,T  -10 0 0
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Figure 1.9: The ACF of the Conditional Volatility from the MC Experiment o f  
GARCH(1,1) for a  = 0.3,/5 = 0.6, T = 1000
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Figure 1.10: The ACF of the Conditional Volatility Implied by GARCH(1,1) and 
ARCH(5) Estimates for S&P 500 Index Return Data

x lO-3

Figure 1.11: The Estimated Conditional Volatility from GARCH(1,1) and ARCH(5) 
Estimation for S&P 500 Index Return Data 

(A typical sub-sample is presented here to facilitate the visualization.)
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Figure 1.12: Profile LLF o f GARCH(1,1) Estimation for S&P 500 Index Return Data
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Chapter 2: A Closed-Form Asymptotic Variance-Covariance Matrix for 
the Maximum Likelihood Estimator of the GARCH(1,1) Model

2.1 Introduction

The GARCH(1,1) model has become a benchmark in modeling time-varying 

volatility since its introduction by Bollerslev (1986). However, its estimation is 

usually implemented by numerically maximizing the log-likelihood function and the 

involved nonlinearity makes both MLE and its asymptotic variance unavailable in a 

closed form. As a result, different numerical optimization procedures often lead to 

significantly different values for both MLE and its standard error. Even for the same 

numerical value o f MLE, much different standard errors are frequently returned by 

various software packages. In Brooks, Burke and Persand (2001) they show that the 

GARCH(1,1) estimation of daily German mark/British pound exchange rate data 

returns 0.0725 in MATLAB as the estimated standard error for the GARCH estimate, 

in a sharp contrast to 0.0166, the one from TSP, given exactly the same GARCH point 

estimates. Furthermore, the lack o f a closed-form asymptotic variance makes it 

difficult to study the property of GARCH MLE.

This paper works out a closed-form asymptotic variance matrix for GARCH(1,1) 

MLE in terms of only model parameters so as to provide an analytical formula to 

compute the standard error for GARCH estimates. This asymptotic formula has the 

advantage of agreeing upon the values of standard errors given the same point 

estimates. More importantly, the resulting analytic asymptotic variance shows 

clearly that the inference of the GARCH parameter depends functionally on the 

ARCH parameter, approaching zero continuously as the ARCH parameter goes to 

zero. This means that the GARCH(1,1) model satisfies the Zero-Information-Limit 

Condition formulated by Nelson and Startz (2007), which makes the inference 

questionable when the ARCH parameter is small. Ma, Nelson and Startz (2007) 

(chapter 1 of this dissertation) carefully investigate this issue.

The consistency and asymptotic normality o f the GARCH(1,1) MLE have been
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well established by Bollerslev and Wooldridge (1992), Lee and Hansen (1994), and 

Lumsdaine (1996), which are discussed in section 2.2. A local approximation is 

taken in the information matrix to avoid taking the expectation of a nonlinear form. 

Consequently, the derivation breaks down to the derivations of the auto-covariance 

and cross-covariance structures for the squared GARCH process, which are derived in 

section 2.3. This results in a closed-form information matrix in terms o f only model 

parameters. The asymptotic variance-covariance matrix is readily available by 

taking the inverse of this information matrix. In section 2.4, I carry out a Monte 

Carlo experiment and show that this formula works very well. Section 2.5 

concludes.

2.2 The Asymptotics of GARCH(1,1) MLE

An archetype GARCH(1,1) model may be written as6:

Here, I assume 4, is independently drawn from a standard normal distribution. 

Assuming normality allows me to work on the MLE and have known expressions for 

the higher moments, which are required for the derivations.

Write up the log-likelihood function:

(2 .1)

h, - a - v a  -Ei-\ +p ■ /j(_, (2.2)

T

(2.3)

(2.4)

The mean o f equation (1) is set to be 0 without loss o f generality since the information matrix is block-diagonal, 
as shown by Bollerslev (1986).
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Where, 6 = (<a,a,/5)' and 6r maximizes the log-likelihood function for a given 

sample data {el ,£2,---,£r } . In practice, the evaluation of (2.3) and (2.4) conditions 

upon an initial assignment of h0. In spite o f various choices of h0 the difference 

disappears asymptotically as long as the underlying process is stationary and ergodic.

The Gradient at each time t o f the log-likelihood function is:

( 2 .5 )
' 39 2ht 39 ht '  v 7

By law of iterated expectation we have:

£ K (6 )]  = 0 (2.6)

The Hessian at each time t is given by:

/ / ( 0 )  = = — 1)— [- 1 9h‘ ]  (2 7)
3939 ht 3 9 ' 2 h t 39 2ht2 39  39' h,

Again by law of iterated expectation, we have:

E[H, (0)] = ----------------------------------------------------------(2.8)
2h<2 30 30'

Lumsdaine (1996) proves the consistency and asymptotic normality of the quasi-MLE 

by assuming a compact and convex parameter space along with a strict stationarity 

and ergodicity condition for the GARCH(1,1) model, derived in D. Nelson (1990):

E [ H f l  + a - g ) ] < 0  (2.9)
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To have a well-defined finite second moment, I further impose a stronger restriction 

as in Bollerslev (1986):

a  + fi <1 (2 .10)

One can easily verify that condition (2.10) along with the normality assumption o f 

is sufficient to derive condition (2.9) via Jensen’s inequality.

Since t,t is normal, the log-likelihood function is correctly specified, which 

implies the asymptotic result:

T ll2(0T - 0 Q)~N(O,I~l) (2.11)

Where 60 is true parameter value; 70 is the information matrix evaluated at 60 :

0 Id m '
(2 .12)

By recursion and assuming the process extends infinitely far into the past, we have the 

analytical result7:

dht
~80

I r'
i= l
00

/=1 
oo

(2 13)

Combine result (2.8), (2.12) and (2.13) to get the symmetric and positive definitive 

information matrix:

7Fiorentini, Calzolari and Panattoni (1996) derive the first and second derivatives in GARCH models, which 
include this specific result.
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( ± r l f
i=i E

00 00
I / r ' I / r ' * , , ’
/'=! /=1 17

OO 00

i=l i=l

i

:s-

1 l

<N

1 1

SJ

1

7 =
( Z r ' e j ) '

i=1 P t=1 i=1
hf h,2

(2.14)

( £  P “ K<?
i=1

To avoid computing the expectation o f a nonlinear form for each element in the 

information matrix, I take a local approximation in the neighborhood around a  = 0 

so as to take the denominator out8. Note here the interchange of the limit and 

expectation operations is valid supposing each element is bounded on the parameter 

space. I take the element /(1,1) for illustration purpose:

lim £
a->0

( S / ? '- 1)2
/=1 — F 1=1

limh.2a—>0
= (lim—— a  2 P )1 ) • d im E [ ( Z r lf  ])

CO *->0a->0 i=t

(2.15)

Intuitively, when a  is very small, ht can be approximated by a _ p -

this way, we can deal with only the linear part on the numerators. It is easy to derive 

the analytical expressions for the numerators o f 7(1,1), 7(1,2) and 7(1,3). Next, I 

show how to derive those of 7(2,2), 7(3,3) and 7(2,3).

8 It is not unusual to see a small OL in empirical work, which makes this approximation empirically relevant.
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2.3 The Derivation of A Closed from Information Matrix

To derive analytical expressions for the numerators o f 7(2,2), 7(2,3) and 7(3,3), we 

need to work out the auto-covariance and cross-covariance structures for {sf} ,{ht} . 

To see why, express out the terms:

/
E + 2 £  (2.16)

V  ( = 1  J  t = i  / = i  y = / + i

' " V , l  = (2.17)
\  i=l /  (=1 1=1 j=i+l

E ( Z f i  " HV,) = E l f ,  + i
i= i i= i i= i ;= i y=i+i

(2.18)

The derivation of the auto-covariance structures for {e2},{ht} starts from the 

ARMA( 1,1) representation for the GARCH( 1,1) model9:

St2 -  0) + (a  + P)- s ,_2 +wt -  /?w,_, (2.19)

Where innovation wt = ht -1 ) is a Martingale Difference Sequence (MDS):

E[wt \ 1 , ^  = 0 (2.20)

Where {7,} denotes the information filtration and wt is adapted to 7,.

Furthermore, notice that {ht} has an AR(1) representation:

ht =a> + (a + p  ) h t_l +aw,_l (2.21)

9 Refer to Hamilton (1994) for a standard treatment.
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Note that ht is adapted to / M .

The assumption (2.10) implies a finite unconditional variance for at :

E[ef ] = E[h'] = - - - - - < oo, (2.22)
1 - a -  p

However, for the existence o f a finite fourth moment, we impose one more restriction 

for parameters as derived in Bollerslev (1988):

l a 2 + 2ap  + p 2 <\  (2.23)

Under this restriction, we have:

^  ] = 3£[*,’ ] = --------  3‘ ‘ ( l+ « + l ) ---------- (2 24)
(1 -  3 a 2 -  l a p  -  p 2 )(1 -  a  -  p)

And the following autocorrelations for both { s f } and {ht}:

, a ( l - a p  -  p 2)
A  = 1 ,  a %  ’ and Pi =(a  + p y  A . i = 2,3, • • • (2.25)1 -  l a p  -  p

p ? = ( a  + P)‘,i = 1 ,2 ,-  (2.26)

These autocorrelations have also been independently derived in Bollerslev (1988) and 

Kristensen and Linton (2006). One can derive them following Harvey (1993, 

Chapter 1). He and Terasvirta (1999) also work out the general fourth moment 

structure o f a squared GARCH process.

Manipulating by the standard formulas for expectation, covariance and variance, 

summing up the geometric series, and plugging in the expressions for the second and 

fourth moments, I obtained the closed forms of (2.16) and (2.17) (See Appendix B for
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details):

J ' y  o ‘-i£ 2 1  _________ oP__________ 3(1 + a  + P)  + i p
I tT  J ( l - 2 a p - p 2) ( l - a - p y \ - l a 2 - 2 a f 3 - p 2 ( l - / ? ) 2

(2.27)

£ f y  g  i - ih  V  = ____________ ^ ____________  (l + « /?  + /72)(l +  «  + /7) + _2*
Im  'J  ( l - p 2) ( l - a p - p 2) ( l - a - p ) 1 l - 3 a 2 - 2 a p - p 2 1 - / T

(2.28)

Lastly, to derive the analytical expression for (2.18), I transform the cross-covariance 

between {ef} and {ht} to known auto-covariance of {s2} and {ht} by taking 

advantage of the MDS property of wt (See Appendix for details).

These results, along with the previous work, allow us to derive the following 

closed form expression for the numerator of 7(2, 3):

£ < I < 8 'X , , L

“ ’C+ a + P) ■(------ !-----r+  3tt/? , ) (2.29)
{ \ - a - p ) { \ - 3 a 2 - l a p - p 2) { \ - p 2) \ - a p - p 1 1 - 2  a p  -  p 1

ft)2 P 2 a  + p  a
+ (I - a  — P )2(I - p 2) \ - p  \ - a p - p 2 1 - 2 a p - B 1

To finish this section, I list the result for numerators of 7(1,1), 7(1,2) and 7(1,3):

£ [ ( | > i_1)2] = (2.30)
1=1 ( t -  p )

(231)
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The above derivations result in a closed-form information matrix, taking the inverse 

of which, I obtain the asymptotic variance-covariance matrix10.

2.4 MONTE CARLO SIMULATION EXPERIMENTS

To evaluate how well this closed-form expression works, I cany out a sequence of 

Monte Carlo simulation experiments. The sample size is fixed at T=  1000 and nine 

sets o f parameter values have been chosen for empirical interests:

M ' 1 1
'1 ' f l  ' ' l  ' 1  ' '1 ' 'I " f l  "

a - 0.05 9 0.10 9 0.05 9 0.10 9 0.05 9 0.10 9 0.05 9 0.10

J , ,0 , <0-2 , <0-2 ,

©

,0-5 ,

00© 00d

The information matrix based upon the simulations is computed by averaging the 

realized information matrices across the simulated data paths for each set o f parameter 

values. The number of simulations is set to be 100,000. Therefore, resulting 

variance matrix is almost the true one with little MC variation. Table 2.1 gives the 

comparison for the variance-covariance matrix and show that my analytical formula 

works fairly well, especially when a  is small, regardless of the magnitude o f/5 .

2.5 CONCLUSION

In this paper, I gave an analytical formula to compute the standard errors for GARCH 

estimates. The Monte Carlo simulation experiments demonstrate that this formula 

works well, especially when a  is small. This formula can be used in practice to 

settle any discrepancy of estimated standard errors from various software packages. 

It also shows analytically that the GARCH(1,1) model satisfies

t0 Due to the lengthy algebra, the result is not displayed here but is available from the author upon request.
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Zero-Information-Limit Condition defined by Nelson and Startz (2007), i.e., the 

information for the GARCH estimate (3 approaches zero as the ARCH parameter 

a  goes to zero. ZILC implies that the information o f j i  tends to be overestimated 

when a  is small and the routine test will fail to report a correct size, as shown to be 

true in Ma, Nelson and Startz (2007).
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Table 2.1. Comparison of the Asymptotic Variance-Covariance Matrix (Total difference is the sum of the absolute difference)

Parameter Closed-Form Expression Numerical Evaluation Difference of Total

Values Variance Matrix S.E. Variance Matrix S.E. S.E. in % ■Difference

CO 1 0.3990 0.0000 -0.3772 0.6317 0.4418 -0.0003 -0.4177 0.6647 5.23%

a 0.05 0.0009 -0.0009 0.0300 0.0014 -0.0009 0.0370 23.32% 33.78%

P 0 0.3592 0.5993 0.3977 0.6307 5.23%

CO 1 0.0990 0.0000 -0.0873 0.3146 0.1224 -0.0004 -0.1080 0.3499 11.20%

a 0.1 0.0008 -0.0008 0.0282 0.0017 -0.0009 0.0412 46.11% 68.49%

P 0 0.0794 0.2817 0.0981 0.3132 11.19%

CO 1 0.6007 0.0047 -0.4536 0.7750 0.6427 0.0062 -0.4868 0.8017 3.44%

a 0.05 0.0010 -0.0045 0.0316 0.0014 -0.0058 0.0369 16.77% 23.94%

P 0.2 0.3447 0.5871 0.3709 0.6090 3.73%

CO 1 0.1631 0.0024 -0.1147 0.4039 0.1855 0.0037 -0.1321 0.4307 6.64%

a 0.1 0.0010 -0.0026 0.0316 0.0017 -0.0039 0.0412 30.26% 44.64%

P 0.2 0.0830 0.2881 0.0963 0.3104 7.74%
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Chapter 3: Valid Inference under Weak Identification in Models Where the 
Zero-Information-Limit-Condition Holds

3.1 Introduction

A  number o f  econometric models o f  importance in practice have representations o f  the 

form

where y  and P  are scalar parameters, y,  x  and z are data, X, is a vector o f  regression 

coefficients, and s t is a homoskedastic error with variance <x2. Examples include

certain non-linear regression models such as production functions, the Phillips curve 

model o f  Staiger, Stock and Watson (1997), and, perhaps less obviously, ARM A and 

GARCH models, and Unobserved Component models used to separate trend and cycle. 

N ote that y  controls the amount o f  information that the data contain about p  that is 

identified only i f  y  is non-zero. Models o f  this form satisfy the ‘Zero Information 

Limit Condition’ (hereafter, ZILC) o f  Nelson and Startz (2007) which requires that the 

reciprocal o f  the asymptotic variance o f  ML estimator p , denoted by I ^ , approach

zero as y  approaches a critical value. Suppressing z for simplicity, one readily obtains 

the following expression for the information that the data contain about

By Jun Ma and Charles R. N elson

} • g ( p , x i) + V z  + s i ,y * 0 (3.1)

(3.2)
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where g t denotes g  ( /? ,x ,) and g[ its first derivative with respect to /? . Clearly, 

I-  goes to zero as y  approaches zero, and thus ZILC holds for (1.1). NS show that

when ZILC holds inference based on the Wald statistic t = ( p -  /?) •  5 is problem atic

for two reasons. One is that estimated information tends to be upward biased, the 

relative bias being larger the closer is y  to the ZILC point. The other is that the 

numerator and denominator o f  the t-statistic are not independent as in classical regression, 

but instead are functionally related. Consequently, although estimated standard errors

for p  are typically too small, the associated ^-statistic may be either too large or too 

small, depending on the correlation between g j and g ' . In this paper we consider only 

m odels that are identified; nevertheless, spurious inference is a problem for values o f  y  

that are economically far from zero.

The purpose o f  this paper is to study a strategy for obtaining a valid test statistic for 

p  based on the expansion o f  g ( /? ,x )  around P  = p ,  which gives

yt = y  O K A , * ,)+ 0 0  -  A ) •  g'  ( A , * , ) ) + ( 3 . 3 )

where et may incorporate a remainder term. In some models o f  practical importance 

g (.) and g '(.) are simply data, for example the Phillips curve o f  Staiger, Stock and 

Watson (1997) where y  is the change in inflation, g  = (xt + P )  where x  is the 

unemployment rate and P  is the unknown natural rate, and g ’ is simply one. To 

illustrate the potential for spurious inference, a simulated Phillips curve with independent 

standard normal xi and et , 100 observations, and y=  .01, the estimated standard error

for p  from the non-linear regression routine in EViews™ has a median o f  about 2
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compared to the asymptotic value o f  10. Paradoxically, the associated ‘/-statistics’ are 

also too small, indeed no rejections at a nominal .05 level occur in 1000 replications! As 

mentioned above, NS traced this apparent paradox to the dependence between the

estimated standard error and the estimation error ( f t —fi)  in models where ZILC holds.

In the Phillips curve context an exact test o f  the null hypothesis — is easily 

obtained by making the substitution f i  = /30 + 5  in the model to obtain the linear 

regression y.  =y • ( x l +f i 0) + 6 + e t where 6 = y * 6 .  Since the null hypothesis 

implies that 6* =  Owe test that null hypothesis and obtain a classical /-test with exact size. 

More generally, we may expand g(.) around the value /?, — J30 and obtain the linear 

approximation:

y, =y (3.4)

Thus, a test o f  the null hypotheses f i  = is obtained by regressing y  on g(.) and its first 

derivative (evaluated under the null hypothesis), then testing whether the coefficient o f 

the latter differs significantly from zero. The intuition is that if  the null is true then the 

first term captures the entire influence o f  (3 on the data and the second term should be 

irrelevant, but if  the null is wrong the second term gives an indication o f  how influential 

on the model are departures from the null. In general (3.4) is only an approxim ation - as 

for non-linear regression, Unobserved Components model, ARMA and GARCH models - 

so the actual size o f  the /-test is a question to be investigated.

Section 3.2 presents the results o f  this investigation for a non-linear regression model, 

and for ARM A (1,1), GARCH(1,1), and an Unobserved Components model. Section

3.3 concludes.
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3.2. Valid Inference in Four Weakly Identified Models

3.2.1. A Nonlinear Regression Model

We have shown above, using the Phillips Curve example, that the expansion o f  g(.) is 

exact and so is the proposed test when the functional g{.) is linear in parameters. There 

are, however, other models which take a direct form o f  (3.1) with, generally, nonlinear 

g(.), such as the Hicks-neutral Cobb-Douglas production function we consider here:

y.  = y . Xf  +£i ;y *  0 (3.5)

W here, y i and x, are per capita output and per capita capital input respectively; y , in

its economic term, represents the technology component or, more broadly, the so-called 

Total-factor productivity (TFP); econometrically, y controls the am ount o f  inform ation 

data contains about p  , the capital share o f  output.

Apparently this model satisfies the ZILC condition in NS and as a result, the 

inference based on the Wald /-statistic is not correct due to both its understated 

denominator and the dependence between its numerator and denominator. To illustrate 

the spurious inference in this model we generate a path o f  x(. from the log-normal

distribution and pair it with 1000 paths o f  simulated standard normal , both o f  100

observations to compute y.t with parameter values y = 0 . 0 1 , = 0 . 5 .  The estim ated

standard error for p  from the non-linear regression routine in EViews™  has a m edian 

o f  about 0.98 compared to the asymptotic value o f  6.47. This underestimated standard 

error together with the dependence between the numerator and denominator o f  the Wald 

/-statistic gives about 0.11 rejection frequency for P at the nominal level o f  0.05. This 

is just another example where ZILC results in a failure o f  the Wald /-statistic.

To construct a valid test we may expand g(.), which is x f  in this case, around the
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null fi = fi0, giving rise to the following regression:

y t = y  xf° + X •  xf°  log(x(.) + ei (3.6)

W here X = y * (/i - /3 0) . Here the expansion is not exact but only approxim ate to the

first order as g(.) is not linear in  /3 , and e( m ay include a remainder term. However,

the (3.6) is a classical regression once the regressors [xf°,xf° log(xf)] are evaluated at

the null and the /-statistic for X is straightforward to compute and the inference o f

it no longer functionally depends upon any other unknown parameter. Using the same 

simulated dataset in the above MC experiment, we find that the /-statistic for testing the 

null X -  0 gives an almost perfect empirical size o f  0.051 at a nominal level o f  0.5.

3.2.2. The ARMA Model with Near Cancellation

Among models satisfying the ZILC condition there are some taking the form (3.1) in  a 

less obvious way. One simple example is the ARM A( 1,1) model, know n as, perhaps, 

the m ost parsimonious way to capture the serial correlation:

W here ̂  is the AR coefficient, 6 is the M A coefficient. To relate the ARMA(1,1) 

model w ith form (1.1), we m ay multiply both sides by  (1 - 0 L y l and expand terms out 

to get:

( l - ^ ) y , = ( l - 0 L)*f;/  = l , . . . , r  

fu -  i i .d .N (0, cr£2 ),| (j> \< 1,| 6  |< 1
(3.7)

(3.8)
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Where, y = < j-6  , g ( 0 ,y t_x) = ] T 6'~xy t^  and = (y,_,,.y,_2 . NS show that
i= i

when y is small the standard error for either ^  or 0  is severely underestimated and 

this downward bias o f  the estimated standard error is fairly strong even after taking into 

account the stationarity and invertibility requirement, resulting in a much overstated size 

o f  the Wald f-statistic. The other important driving force o f  size distortion is the

dependence between the point estimate and its standard error, as shown for 6  here.

The concern o f  parameter redundancy in ARMA models traces back to Box and 

Jenkins (1970) in which they urge people to scrutinize the necessity o f  higher ARM A 

terms since obviously the order o f  an ARMA model can be increased arbitrarily by 

adding the A R and MA terms with roughly the same root without violating the 

restrictions imposed by  real data. Although this concern was usually relieved by the 

observation that this type o f  parameter redundancy typically makes little difference as far 

as the forecasting is concerned, the significant difference will instead be made in term s o f 

its economic implications. For example, denote the GDP growth rate at time t by y, 

and assume y t follows an ARMA( 1,1) process:

y, =M + 4 * y , - i + £ , ( 3 -9)

W here, yi is the average growth rate. The implied expectation for the growth rate will 

then be governed by  an AR( 1) process:

E l y *  11,1 = M + <1 •  E[y, | /,_.] + y •  (3.10)

W here y = < f-6 determines the size o f  underlying shock to the expectation process,
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and a higher ^ implies any current shock to the economy lasts longer, increasing the 

risk level o f  economy. The reliance on such a high level o f persistence, so called long 

run risk, to generate interesting results in a general equilibrium ju st starts to become 

popular recently, for example see Bansal and Lundblad (2002), Bansal and Yaron (2004), 

and Gavin, Keen, and Pakko (2006). However, from a statistical point o f  view, when 

the underlying shock has a small size as is true in many cases, one might need to be very 

careful to draw any conclusion for the persistence level solely based on the, likely wrong, 

routine inference.

To investigate how the proposed valid test performs for, say, 6 in this model, 

expand g(.) in (3.8) around the null 6 0 :

y, =7 •  g{6Q, y t-\) + ge(6*,y,-x) + et (3.11)

W here g e (6, = £ ( /  -1 )  • , and X = y ( 6 - 6 0).  Testing the
OU j-2

null X = 0 will be equivalent to testing the null 6 = 6 0.

In practice, to evaluate the regressors [ g ( 6 o, y M ) , g 0 (6 o,j?M) ], we cannot observe 

y ,  back into the infinite past, a standard technique is to set y t =  0 for alU < 0 . This 

makes negligible difference as long as the stationarity and invertibility conditions are 

satisfied. Again (3.11) mimics a classical regression and the inference for X is exact 

in finite sample given normal shocks and can be well approximated otherwise. To see 

how this test corrects the spurious inference resulting otherwise from  the routine Wald 

Mest, w e simulate 1000 data paths each o f  sample size T  = 100 with 

^ = 0.01,6 = 0 ,o c = 1 in Eviews™. Although the usual inference based on the Wald 

M est for 6 fails to cover the true value about 50.1% o f  the time, our proposed linear test 

based on (3.11) does correct for this spurious inference and gives 4.9% rejection
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frequency, roughly its nominal level 5%. Notice here since 6 = 0  testing A = 0 is 

simply testing the second lag in the AR(2) model, which is equivalent to the 0 -te s t with 

one lag for the residuals from the AR(1) estimation. In general, this equivalence is not 

necessarily true though.

Despite the brevity o f  testing M A root 6 , a valid test iox<) = requires some extra

efforts. To see why, duality gives a representation o f the ARMA(1,1) similar to (3.8) but 

parameterized in terms o f  y and (f :

y, =?  1) + £, (3-12)

W here the functional form g(.) remains the same but the argument becom es the

oo

unobserved variable a instead o f  data y  : g (^ ,£ M ) = I > ' V ,  and
i=i

! — (a,_l ,a t_2,.. .) .

However, as long as a consistent estimate for a can be found, the valid test for 

A = 0 in the expansion o f  (3.13) is still feasible to compute in the following regression:

T, =Vg(</>0’£t-i) + * mg M o ’£<-i) + e' (3 -13)

w here  g , (*,*,_,) = = £  ( ; - ] ) .  ̂ e,_,, and A = r
d f  <=2

One way to consistently estimate s  so as to evaluate the regressors in (3.13) is to 

estimate the model by imposing the null <ji = <)Q first, and then compute a using the

estimates. I f  the null is true, a will be a good approximate for a . The other 

equivalent way to implement the test is to replace a w ith restricted estimates and data 

y  via inherent transformation. Several steps o f manipulation results in (see Appendix
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C .l for details):

y, = y * g $  *y,-i) + ,y,-iy\+e, (3-14)

W here, y and 6  are the estimates from ARMA(1,1) subject to the restriction ^  .

Both approaches give the same numerical test statistic as confirmed in the M C 

experiment implemented. Data is generated in Eviews™ w ith true param eter 

values}- = 0.01,^ = 0 ,o e =1 and sample size T = 100, and the proposed test statistic 

rejects the null 54 times in 1000 replications, roughly at its nominal level 0.05.

This valid test based on the expansion o f functional g(.) is straightforward to be 

generalized to deal with a potential spurious inference in estimating an ARMA m odel o f  

higher order with near-identical roots. With multiple AR and M A roots an ARM A 

m odel is weakly identified if  any pair o f  AR and MA roots is sufficiently close to each 

other.

For illustration purpose, consider an ARM A(2,1) model w ith real roots:

( i - ^ L X i - h U y .  =(}-eL)£tU = l,...,T
e, ~ i.i.d.N(0,cr1£),\ <j>x |< 1,| (f>2 \< 1,| 6 1< 1

W hen either one o f  the two AR roots is close to the MA root or both are, this m odel is 

w eakly identified and the usual Wald /-test is problematic. For example, i f  data is 

generated with parameter values <f)x -  0.5, <j2 = 0.01,6 = 0 ,o £ = 1 o f  sample size T =  100,

/-test for the MA root from routine estimation has an empirical size as large as 52.4% at a 

nominal level 5% with 1000 replications in Eviews™.

To implement the valid test strategy, first write (3.15) into the general form:

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



www.manaraa.com

50

(1 - f a L ) y t = ( l - fa L ) [ y  • g ( 6 , y ^ ) \  + e l (3.16)

W here g(.) is defined as above and y = (/2 -  6  . Take an expansion o f  g(.) around the 

null to get, after several steps o f  manipulation:

y, = a x .[(1  - 0 oL r ly ^ \  + a 2 * [ ( l - 0 oL y l y ^  A * [ ( l - 0 oL y 2 y ^  + e, (3.17)

W here, a ,  = y + f a , a 2 = - fa  •  (6 0 + y ) , and A = fa •  y »(6 -  60) . A gain the valid 

test statistic for the null 6 = 6 0 is the t-stat for A in this linear regression (3.17). Just 

to find out how this test performs in finite sample, we simulate data o f  sample size T  = 

100 with fa -  0.5, <f2 = 0.01,6 = 0 , o E = 1 in Eviews™. Our proposed linear test based

on (3.17) gives 5.2% rejection frequency for testing the null 6 = 0  in  contrast to the 

large size distortion based on the usual Wald t-stat. Notice here since 6 = 0  testing 

A = 0 is simply testing the third lag in the AR(3) model, as is true for the simple 

ARMA(1,1) model. Likewise, to test the AR root, take advantage o f duality and use the 

restricted estimate e , just as have shown for the simple ARMA(1,1) model.
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3.2.3. The Unobserved Component Model fo r  Trend and Cycle Decomposition

The decomposition o f  real output into trend and cycle has been o f  a  great interest. 

However, in literature two widely used parametric methods, nam ely Beveridge-Nelson 

decomposition (hereafter BN) by Beveridge and Nelson (1981) and the Unobserved 

Component model (hereafter UC) proposed by  Harvey (1985) and Clark (1987), produce 

surprisingly different estimates for trend and cycle. BN decom position typically 

attributes most output variation to trend but UC model usually concludes w ith m uch 

larger amplitude o f  cycle. Morley, Nelson and Zivot (2002) provide an insightful 

reconciliation o f  this seemingly difference. Here we provide another potential 

resolution o f this puzzle based upon our ZILC findings.

In a UC model, real output is explicitly expressed as a sum o f  the trend and cycle 

components which are treated as state variables, the Kalman filter is adopted to obtain the 

m aximum likelihood estimate and the trend and cycle can be extracted afterwards based 

on the estimated hyper-parameters. Consider the following simple UC setting-up for 

m odeling the real GNP y t :

W here xt and ct are unobserved trend and cycle, respectively. Trend is simply a

random walk with a constant drift (drift itself m ay be random as well) and the cycle is 

AR(1). Nelson (1988), in a M C experiment, shows that even i f  there is no cycle 

variation ( a \  = 0 ) ,  the UC model assigning m ost variation to the cycle appears to fit 

better, which is just another example o f  the Dickey-Fuller (1979) Phenomenon.

Here, we are concerned w ith the case w hen cycle variation is not strictly zero but

y, =u +c,

T, = V i u -dN (°> )

( 1  - $L)ct = e „ e t ~ i i .d N (0 , a ] )

(3.18)

(3.19)

(3.20)
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small, i.e., cr] > 0 but small. We show below that the inference o f param eter estimate

^  A A
(j> depends on a e and is problematic when a e is close to zero.

The above UC model implies a reduced-form ARIMA( 1,1,1) for y t \

(1 -  <tL)Ayt = / /  +  (1 -  </>L)r]l + £t -  =ju + ut -  But_x (3.21)

Where, the identification maps the above parameters in the following way:

y 0 = (l + <f>2) a 2n +2cT2£ +(1 + </,)ans =(1 + 0 2) a 2u (3.22)

n  = -  or2,  -  (1 +  ̂  = -!9 o \  (3.23)

As clear from the above, there are m ore structural parameters than in the reduced form. 

Therefore one restriction is required to identify the model. Typically it is assumed that 

the trend innovation and cycle innovation are uncorrelated (<Jne = 0 ) .  Imposing this

restriction and along with the invertibility requirement, we solve for the unique 6 :

+ + 2 ^  + + 4^ ! M (l-« S )X ]a = ----------------------------------- ;-------- ------------------------------
2 4 * 1 + 2 * ]

It is straightforward to see that ^ -  6  —» 0 as g ] —> 0 . Comparing this to the ARMA

case discussed in the above section well indicates that ZILC holds in this m odel with the 

variance o f  cycle innovation controlling the amount o f  information data contains for

cycle amplitude estimate (p. I f  <j£ is indeed small, little information is available for

estimating <p which may lead to a wide confidence interval and the resulting uncertainty 

o f  filtered cycle estimate should be fairly large if  one accounts for both the filter
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uncertainty and the parameter uncertainty as in Hamilton (1986). However, our ZILC 

findings suggest that in this situation the standard error for <j> may be severely 

underestimated and the resulting uncertainty band might be severely underestimated.

To illustrate a potential spurious inference in the scenario as discussed above, we 

design a  MC experiment with parameters /i = 0 .8,^ = 0,cr^ = 0.95,a 2 = 0.05 and

sample size T  = 200. Notice here the cycle innovation is small ( a 2 - 0 . 0 5 )  and the

true cycle amplitude is even zero, so most o f  the resulting output variation is due to the 

trend component. We generate 1000 replications from the m odel (3.18)-(3.20) with the 

above parameter values. Using routine estimation algorithm based on the Kalm an filter, 

the hyper-parameters are estimated and reported along with their estimated standard error. 

Similar to the ARMA case, a standard t-test for <j) rejects the null about 47.5%  o f  the

tim e and there is even an unusual upward bias for <j> (see Figure 3.1).

ZILC does not provide an explanation for this upward bias; but if  one believes 

continuity is not a bad assumption here, the Dickey-Fuller phenomenon (see Nelson 

(1988)) might provide a good intuition. ZILC, however, indeed predicts the

underestimated standard error for <j>: the median o f  estimated standard error for <j> in 

the MC experiment is merely 0.30 compared with its asymptotic value 1.48. The 

upward bias o f  0  and its underestimated standard error may lead people to believe the 

cycle amplitude is large with quite confidence while actually it is zero.

This paper strives to provide a general approach to constructing a valid inference in 

such a situation. The essential idea is to avoid ,the functional dependence o f  the

inform ation for ^  on the other parameter, say o 2 . Although the estimation o f  a UC

model involves more complications, the comparison with the ARM A model suggests a 

shortcut o f  implementing the general valid test strategy in the following steps: first 

impose the null () = <f>() and estimate all other parameters; secondly, take advantage o f
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the inherent restriction (3.24) to compute the implied restricted estimate 0  ; lastly, resort 

to (3.14) based on the reduced representation (3.21) o f  the UC component model to test 

the restriction ^ . Using the same simulated dataset as in the above MC

roughly at the nominal level 0.05.

3.2.4. The GARCH(1,1) Model with a Small ARCH  Effect

Ma, Nelson and Startz (2007) show that ZILC issue is also contagious to the GARCH 

(Generalized-Autoregressive-Conditional-Heteroskedasticity) model, the first order o f 

which being perhaps one o f  the most popular approaches in capturing time-varying 

volatility for time series data. Despite a great deal o f  rich extensions, the archetypal 

GARCH(1,1) model may be written:

Although quite a few papers have established the consistency and asymptotic normality 

for the GARCH MLE (see Bollerslev and Wooldredge (1992), Lee and Hansen (1994), 

Lumsdaine (1996) etc.), there has not yet been a closed-form asymptotic variance matrix 

available in literature until M a (2007) derived one based upon a local approximation. 

M a’s result demonstrates that ZILC holds in the GARCH(1,1) model and the inference o f 

, the so-called GARCH effect, depends on parameter a  and is problematic when a  

is small. A n ARMA( 1,1) representation o f the GARCH( 1,1) model proves helpful:

experiment, this valid test strategy rejects the null about 44 times in the 1000 replications,

(3.25)

(3.26)

£ t 2 -  co + {a  + P)- s t_* +w, -  (3 ■ w,_, (3.27)
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where the innovation wt =£t2- h t - h t {j;2 - I )  is a M artingale Difference Sequence

(MDS) with a time-varying volatilty. Ma, Nelson and Startz (2007) find that when a  

is small, corresponding to a near-cancellation o f AR and MA roots, the standard error for

0  is underestimated and the dependency between the point estimate and estimated 

standard error reinforces the delusion o f  a significantly strong GARCH effect even w hen 

there is very little, and furthermore that there is an unusual upward bias o f  0  indicating

a  concentration o f  0  around a value greater than the true /3 , a robust result after 

carefully dealing with potential bimodality o f the likelihood function. Their 

investigation into the real data sets reveals that this issue is fairly relevant and justifies 

further endeavors for an approach to correct for this type o f  spurious inference.

The valid test strategy proposed above may be extended to this not quite standard

context where the expansion has to be made in the variance term. For example, to test

the null hypothesis fi = f t (), first realize (3.26) implies:

A, + (3-28)

00

W here g ( /3 ,£ 2_{) = X / ? M£(2-, and *»-i = (£ 2_x, £ 2_2, . . . ) . Take an expansion o f  g(.)
i=i

around the null and the complete model is given:

e t= J h r Zn St ~ U J J f {  0,1) (3.25)

h, = c + a  ■ g(/30, i ,2_,) + A • g p (/?0, £ 2_{) + remainder (3.29)

CO ®
where, c = —— -, A = a  • ( y6  - f i 0) , and g /;(y9,^2_1) = ^ ( / - l ) - / ? ' " 2̂ 2_,.. As a result,

* P  i=2
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the f-stat for X = 0 in (3.29) is equivalently to test the original null ft = ft0. To see 

how this test makes correction, we simulate data o f  sample size T  = 1000 w ith 

«o = l , a  = 0 . 0 1 , / 3 = 0  and the f-stat for X = 0 reports 76 rejections among 1000 

replications in EViews™, in contrast to as large as 598 times o f  rejections based on a 

routine r-stat for ft . Notice since the expansion is on the variance, the f-stat for X is 

no longer in a classical linear regression context as for ARMA case, which results in  a 

notable deterioration o f its size but well within tolerance o f  usual standard.

Very often it is the sum a  + ft that is o f  a great practical interest, see e.g., Bansal 

and Yaron (2004), since the implied volatility ht is governed by a particular AR(1) 

process, with a  + ft being the persistence measure:

ht = co + ( a +  ft)- ht_j + a  • (3.30)

Unfortunately, when a  is small the estimated persistence a  + f i  shares the same

problem as that o f  f t , that is, an upward bias along with an underestimated standard

error, leading to an artificially persistent pattern for ht fluctuating a great deal more than 

the true one.

Since a  + ft corresponds to the AR root in (3.27) a comparison w ith ARMA model 

reveals that a valid test for it inevitably requires one extra step due to the fact that the 

expansion will be based on an evaluation using the unobserved variable. Denote a  + ft 

by p  and (3.26) may be equivalently written as:

ht = — + a  • g ( p , w ,_ ,) (3.31)
1 - p
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W here, w,_, = (w,_,, w,_2,...). And an expansion o f g(.) around the null p  = p 0 is:

ht = + a  • g ( p 0, w,_i) + £  ■ g P (Po > w(_,) +  remainder (3.32)
1 - p

Where, X  = a  •  ( p  -  p Q) . Again to compute the test statistic for X  = 0 , one can first 

estimate the GARCH(1,1) model with the restriction a  + (j = p 0 and extract ht using 

the restricted estimates to obtain a restricted estimate o f wt . Alternatively, we can

re-parameterize (3.32) using the inherent transformation to get (Appendix C.2 gives 

details):

s r  yfih ~  i-i-d-N(0,l) (3.25)

h, = c + a  •  g ( f i , s ]_x) + /(*• [a~lg ( p 0, £,2_,) -  a~ xg ( $ , )] + rem ainder (3.33)

To test the null hypothesis p  = p 0, one just need to evaluate the pseudo-regressors in 

(3.33) using restricted estimates a , (3 along with the null p 0 and re-estimate the 

model to compute a r-stat for X  -  0 . We simulate data o f  sample size T  = 1000 w ith 

Q) a  = 0 .0 1 , /3 = 0  and the t-stat for X  = 0  reports 69 rejections am ong 1 0 0 0  

replications, in contrast to 42.7%, the empirical size based on the routine f-test.

3.3 Conclusion

This paper shows that a number o f  important econometric models, seemingly unrelated, 

share a common issue in testing a parameter o f  interest, derived from the fact that the 

inference o f  it depends functionally upon another identifying parameter, the ZILC 

phenomenon. In all cases where ZILC applies, the information is overestimated and the
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resulting standard /-test fails to report the correct size. We suggest a general approach to 

obtaining a valid test in a linear approximation o f  the original model. By showing how 

to implement this valid test strategy in various cases, we present the evidence that this 

test performs fairly well generally, able to correct for the spurious inference which would 

appear otherwise if  based upon the standard /-test.
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Figure 3.1 Histogram o f  (f> from the MC experiment o f  UC Component M odel for

M = 0 .8 ,^  = 0, = 0.95 ,<j ]  = 0.05

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



www.manaraa.com

60

Chapter 4: Consumption Persistence and the Equity Premium Puzzle: A  
Resolution or Not?

4.1 Introduction

It has remained a major challenge to address too high observed equity premium given 

consumption properties, leading to so-called “equity premium puzzle” as pointed out by 

M ehra and Prescott (1985). Recently, Bansal and Yaron (2000, 2004) propose a 

resolution based on a small but highly persistent component in consumption nam ed the 

“ long-run risk”, along with the Epstein-Zin (1989, 1991) recursive utility function. 

Furthermore, Bansal and Lundblad (2002) show that this long-run risk can also 

successfully resolve the “volatility puzzle”, a phenomenon found by Shiller (1981) and 

LeRoy and Porter (1981) that equity prices are much more volatile than their dividends. 

Despite success in explaining these asset pricing anomalies, the long-run risk in 

consumption is hard to detect empirically as made clear by Hansen, H eaton and Li (2005). 

Cochrane (2006) expresses his concern by stating “ ...without strong direct evidence for 

the required long run properties o f  consumption growth, the conclusions will always be  a 

bit shaky...” This paper aims to evaluate this resolution o f  the equity premium puzzle by 

directly addressing Cochrane’s concern if  there is “strong direct evidence” for the highly 

persistent component in consumption, in light o f  a recent finding about the potential 

spurious inference in weakly identified models by Nelson and Startz (2007), Ma, N elson 

and Startz(2007), and M a and Nelson (2007). It will be shown that the model adopted 

to identify the high level o f  persistence in consumption growth expectation and volatility 

processes is weakly identified. The resulting spurious inference m ight account for the 

apparent resolution.

Numerous efforts have been made to tackle the equity premium puzzle, for example, 

the habit-formation utility function by Constantinides (1990), Abel (1990), Campbell and 

Cochrane (1999), etc. However, Mehra and Prescott (2003) point out the “effective”
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risk aversion in these resolutions are still unreasonably high. Weil (1989) finds that the 

Epstein-Zin utility function is not much helpful to address the equity prem ium  puzzle 

given very little predictability in consumption growth11. Note that Weil (1989) models 

consumption growth using a two-state Markov-switching (MS) process which implies 

only one period momentum in consumption predictability, in contrast to the continuous 

ARMA-GARCH framework in Bansal and Yaron (2000, 2004) which has a  potential o f  

capturing a small but persistent predictable component and the claimed high level o f  

persistence in consumption growth expectation and its volatility processes is the key to 

their resolution.

In Section 4.2, I restate that a high level o f  persistence in consumption, the long-run 

risk, has a potential o f resolving the equity premium puzzle and it appears to be 

empirically robust based on the routine estimation method. In section 4.3, I show that 

the relevant model is weakly identified and the resulting spurious inference might 

over-estimate the persistence size with too tight a confidence interval. W ith the help o f 

a valid inference strategy proposed by M a and Nelson (2007) (Chapter 3 o f  this 

dissertation), I correct the confidence interval for persistence level in this scenario and 

m y result casts a doubt on the existence o f  such long-run risk. Section 4.4 concludes.

4.2 How Persistence in Consumption Resolves the Puzzle

The analytical demonstration in this section is largely based on Bansal and Yaron 

(2000), in which they model the consumption growth process as an ARMA(1,1) process:

(g l+1 -M )  = 4 - ( g , - M ) + n l+i - v - n ,  (4 -l)

where g t is real per capita consumption growth (continuously compounding) and rjt is

11 One applauded merit o f Epstein-Zin utility function is that it allows for a separation o f  the risk aversion and IES 
(Intertemporal Elasticity o f Substitution) which are controlled by one single parameter in a typical CRRA (Constant 
Relative Risk Aversion) utility function.
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a serially uncorrelated normal innovation but with time-varying conditional volatility 

governed by GARCH(1,1) (see Bollerslev (1986)):

7 7 ,+1 ~  N(0,h t )
(4.2)

ht = co + a -r j t + f t  ■

It is helpful to write out the implied state-space form o f this specification:

(xt - p )  = (j-(xt_l - p )  + f T ] t 

g t+i = x ' +Tlt+i ~ N (0’ht )

h, =co + p -h ,  , + a  ■ w,
2 , <4 *4 )77,+, = h t + wl+l

where x t = E t[gt+l\ is the expectation o f the next period’s growth rate conditional 

upon the available information at time t. Clearly, the AR root ^ determines how long 

any current shock to the conditional expectation persists, and z = <j -  u determines the 

size o f  the underlying shock. Furthermore, the conditional volatility is allowed to be 

time-varying, as opposed to Mehra and Prescott (1985), Weil (1989) and Cecchetti, Lam 

and M ark (1990). Apparently, p  = a  + ft measures how long any current shock to the

volatility process lasts and a  determines the Siz.c o f  the underlying shock w, = 77,2 -  h,_{. 

Using dividend data, Bansal and Yaron (2000) estimate both persistence measures <j> 

and p  to be very large with a fairly tight confidence interval. Bansal and Yaron (2004) 

calibrate a similar model to consumption and dividend data by assigning very large 

values to both <f> and p  . Along with the Epstein-Zin recursive utility, the model 

generates a sizable equity premium consistent w ith the historical level w ith risk aversion 

param eter no higher than 10, the upper bound imposed by Mehra and Prescott (1985).
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To continue the illustration, I lay out the analytical solution here but leave a sketch o f 

their derivations in the appendix D 12:

->>]  = [< 1 -0 )P ! + - P \ - a ]  +[(1 - 9 ) ^ Q 2] - a W w -0 .5 -< r’ (4.5)

where if/ denotes the IES, y the risk aversion, and G = ------ -
1 -

constants P  = 1 + k , t  • k , is an
2(1 — at, <j))2( \ - K { p )

approximation constant smaller than but close to 1. Here, rm is the market portfolio 

return and rf  is the risk free rate. From (4.5), the equity premium has three 

contributions: compensation for the risk involving <r2, the unconditional variance o f  the 

innovation in consumption growth level, compensation for the risk associated w ith <?l, 

the unconditional variance o f the innovation in consumption volatility, and lastly the 

convexity adjustment term involving a 2m, the unconditional variance o f  the market 

portfolio return which can be further given by:

Equation (4.5) allows us to study the impact o f  persistent components to the equity 

premium. The appendix D demonstrates that the m ultiplier term before a 2 is 

increasing in P  for the considered range o f preference parameters. As a result, by just

(4.6)

12 Readers interested in more detailed derivations are referred to Bansal and Yaron (2000, 2004). They solve the 
model both numerically and analytically but show there is no significant difference.
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increasing <) one can easily match any equity premium level. Similarly, increasing the 

persistence level p  in the volatility process helps increase the prem ium  as well.

There are two points worth emphasizing. First, the Epstein-Zin recursive utility 

specification is necessary to allow the persistence to have a significant impact. In the 

standard CRRA specification, where y • ly = 1 or 6 = 1, the time-variation o f  volatility 

would not be priced and no level equity premium comparable w ith the historical level can 

be generated with a reasonably low risk aversion13. Second, i f  the level o f  persistence is 

not high enough, the Epstein-Zin utility specification generates no m uch higher equity 

prem ium  than the standard CRRA utility specification, which is what Weil (1989) 

concluded. In the extreme case when consumption growth is i.i.d, the equity prem ium  is 

simply: y - a * , exactly the same result as would be with the CRRA specification.

Therefore, correctly estimating persistence measures is critical. From a  statistical point 

o f  view, this is more about a correct inference than one single point estimate.

Next, let us turn to a study o f  consumption data in search for an empirical evidence o f  

the long-run risk. There are a few reasons why I want to focus on the consumption data 

instead o f  equity cash flows: first, note m ost classical literature on the equity prem ium  

puzzle does so, see M ehra and Prescott (1985) and Weil (1989) etc.; secondly, for the 

model considered in this resolution, consumption and dividends share the same persistent 

component and the differentiation o f  them considered by Bansal and Yaron (2004) is not 

essential to the resolution; lastly, dividends are not accurately m easured since observed 

dividends typically include only cash dividends and have to ignore the other forms o f  

payments. Furthermore, it is not trivial to apply an appropriate seasonal adjustm ent 

procedure to raw dividends data without introducing artificial serial correlation.

The quarterly real per capita personal consumption expenditure o f  nondurable goods 

and service from 19471 to 2005IV is obtained from the Bureau o f  Economic Analysis 

(BEA). The frequency o f  quarter is chosen to have a larger sample size than that o f  the

13 See Appendix D for algebraic details.
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annual data, while avoiding the seasonality issue o f  monthly data, as discussed by  W ilcox 

(1992). The consumption growth rate is annualized by continuously compounding. 

The average growth rate is 2.1% and the annualized standard deviation is 4.0%, both 

slightly higher than 1.8% and 3.6%, the numbers in M ehra and Prescott (1985) for the 

sample period o f  1889 -  1978.

First an ARMA(1,1) is estimated and the point estimates along w ith their W hite 

Heteroskedasticity-Consistent standard errors are reported below:

p  = 0 .0 2 1 (0 .0 0 2 ) f  _  o.78(0.15) £ = 0.15(0.06)

Notice that t  seems to be significantly greater than 0. Formally, the hypothesis test 

for H q ' . z = 0  is nonstandard since the AR and MA roots are not identified under the

null. I implement the supZJ? test proposed by Andrews and Ploberger (1996) and obtain 

a test statistic o f  16.37, far exceeding the 5% critical value. This is well expected since 

the first autocorrelation for consumption growth is 0.23, significantly positive. More 

importantly, the persistence measure has a point estimate 0.78 with a 95% confidence 

interval [0.58,1.08], implying a fairly high level o f persistence.

Fitting the residuals from the above estimation into the GARCH(1,1) model, I report 

the point estimates together with the Bollerslev-Wooldrige robust standard errors14:

a> = 1.43 x 10 '5 (1.40 x 10“5) p  = 0.96(0.04) a  = 0.11(0.05)

First, there is clearly some serial dependency in the conditional volatility and the first 

autocorrelation o f  the squared residuals is 0.22. Since a test for the hypothesis a  =  0 

is nonstandard, I implement the supLZ? test proposed by  Andrews (2001) and the null is

14 I separately estimate the level and volatility processes to facilitate ensuing analyses and this procedure is robust to a 
potential misspecification o f  GARCH as we will challenge its validity in the next section.
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rejected significantly at the 5% level. Secondly, the persistence measure p  has a point 

estimate as high as 0.96 with a 95% confidence interval [0.88, 1.04]. So there also 

seems to be a large and significant GARCH effect, resulting in  an  extremely high 

persistence level in volatility.

Given that the confidence interval for persistence level identified above implies the 

existence o f  a highly persistent component in consumption, the so-called long-run risk, it 

is not surprising to find that a relatively high premium is requested by the agent. Using 

the above point estimates, an equity premium o f 6.2%, comparable w ith the historical 

level, can be generated by assigning the following values o f  preference 

parameters: y = 1 0 , ^  = 2  15. Each Risk involving level risk and volatility risk 

contributes about ha lf respectively. Furthermore, a risk free rate as low as about 0.8% 

can also be simultaneously replicated by setting the discount factor S = 0.966.

Table 4.1 describes the variation o f  equity premium at different persistence levels, for 

fixed preference parametersat at y = 10, i// = 2 . Two features are sparkling: first, equity 

prem ium  is increasing in  persistence level in  a much faster pace as one moves into the 

area o f  higher level o f  persistence: in the area o f low level o f  persistence, even an 

increase as large as 0.6 in both level and volatility persistence increases the equity 

prem ium  only marginally (by merely 0.53%); by contrast in the area o f  high level o f  

persistence any small increase in persistence triggers a fairly large jum p in the equity 

premium. This observation may well be aligned with the analytical solution (4.5) where 

the equity premium is not only increasing but convex in both persistence measures. 

Secondly, the equity premium tends to explode if  either the level or volatility turns out to 

be non-stationary.

From another perspective, Table 4.2 shows values o f  risk aversion param eter 

required to match the historical equity premium level at about 6% corresponding to

15 The risk aversion parameter is set at the upper bound imposed by Mehra and Prescott (1985); IES is set at a  value 
well within the reasonable range as estimated by Hansen and Singleton (1984). Note, however, that there has been 
extensive debates on estimating IES, see e.g. a  recent study by Yogo (2004) which claims that IES is rather far smaller 
than 1. It is important to note that the resolution discussed here depends critically upon that the IES is greater than 1.
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various persistence levels within the 95% confidence interval identified above. I f  there 

is no persistence at all, y needs to be as high as 40. But even for the low er bound here, 

y is reduced greatly to 21.

These two exercises illustrate that a very high level o f  persistence helps resolve the 

equity premium puzzle and, i f  the confidence intervals for <} and p  identified above 

are correct, the puzzle would not seem as firm as before. Unfortunately, as we 

scrutinize the above ARMA(1,1) and GARCH(1,1) estimation result, both i  and a  

are small, which suggests that the models are weakly identified. In the next section, I 

will show this may result in spurious inference for <f and p  and we need to address 

this issue using a valid inference strategy.

4.3 Obtaining a Valid Inference for Persistence Measures

N elson and Startz (2007) show that when identification o f  one param eter is conditional 

on another inference for the former will be misleading if  the Zero-Information-Limit 

Condition (ZILC) holds. The ARMA( 1,1) is illustrated as one example where the 

standard error for either <j> or v  tends to be understated when the identifying parameter 

z = <! -  u is small. Ma, Nelson and Startz (2007) further find that ZILC holds in 

GARCH(1,1) as well and the standard error for either p  = a + f i  or tends to be 

underestimated when the identifying parameter a  is small. W hat is even worse is that 

the estimated standard error is typically negatively correlated with the point estimate, 

which m ight reinforce the illusion o f  a very high level o f  persistence while actually there 

is very little.

To give a fresh picture about how misleading the routine estimation could be when 

models are weakly identified, I present two simple Monte Carlo (MC) experiments here, 

for ARM A( 1,1) and GARCH( 1,1) respectively. Interesting readers are advised to obtain 

more details in Nelson and Startz (2007), and Ma, Nelson and Startz (2007). In the first
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experiment, I simulate 1000 paths o f  data {g,} according to equation (4.1) with 

param eter values <f = 0,u = -0 .15 16, implying no persistence at all in the growth 

expectation, with a simplification o f  standard normal tjt and ju -  0 . The sample size 

T  = 236 is chosen to match that o f  the quarterly consumption data. The coverage 

probability o f 95% confidence intervals for <f> constructed from the standard estimation 

algorithm turns out to be only 72.6%, with a MC variation o f  1.4%. Similarly, I carry 

out the second experiment for GARCH(1,1). 1000 paths o f  data {77,} are simulated

according to equation (4.2) with sample size T  =  236 and param eters 

co = 1,a  = 0 .1 1 , 7 9  = 0 ,  implying there is only a modest persistence ( p  = 0.11). The 

coverage probability o f  95% confidence intervals for p  is 49.6%  with a MC variation 

o f  1.6%, even much worse than the ARMA case. Furthermore, the point estimate p  

has a large mass near unity and its median is as high as 0.7, the phenomenon o f  an 

upward bias which seems unique to GARCH model.

The results from MC experiments show that, in presence o f  w eak identification, even 

i f  the underlying true process does not embody a high level o f persistence or the long-run 

risk, the routine estimation algorithm, however, might find one and tends to overstate its 

significance. A pertinent question is how to obtain a valid inference for the persistence 

measures in the presence o f  weak identification? Built upon N elson and Startz’s (2007) 

work, M a and Nelson (2007) suggest taking a linear approximation o f  the original 

nonlinear model and implementing a /-test in it as a valid inference strategy when the 

model is weakly identified. Their work discusses in detail w hy and how this works 

nicely for a general class o f models including ARMA and GARCH. As we will see 

shortly, this test can indeed obtain a correct size while a routine 7-test fails to do so when 

the model is weakly identified.

16 Nelson and Startz (2006), and Ma, Nelson and Startz (2006) find that the identifying parameter is not subject to 
ZILC and thus is well estimated. Therefore, we use the estimated value as a good approximation o f the underlying 
true identifying parameter to generate the data.
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To implement this test strategy for the persistence measure (f>, write out a general 

form for ARM  A( 1,1):

g,  = * + (4.7)

oo

where g , = g t - / i  , /(^ * 7 ,- i)  = , 7 7 ,-1  = (tĵ , 77,_2, . . .) , and 77, is
i=i

uncorrelated but allows for a possible but unknown heteroskedastic structure. In the 

first step, the ARMA(1,1) is estimated by imposing the null H 0 :</> = ^0 , resulting in 

restricted estimates u and x = <t>0 - u  . In the second step, a linear approxim ation is 

taken, leading to a linear regression with transformed regressand and regressors evaluated 

at v  and <fQ:

g, = T •  f(P>g,- i ) + ^ •  i m ,g,- i) -  / ( « . g t-x)] + res (4 -8)

Where, X = i  •(<)-<f>0) , g t X -  . The resulting valid test for the null

hypothesis H 0 :<f> = i)0 is a classical /-test for X = 0 in the linear regression (4.8).

Intuitively, i f  the null is true the first term in (4.8) should be enough to summarize the 

serial correlation in data.

To see if  this test can correct for the spurious inference issue, I com pute the test 

statistic for each sample data in the first MC experiment. The coverage probability o f 

95% confidence intervals for the GNR /-test is 95.3%, very close to its nominal level but 

in sharp contrast to the severe size distortion o f the routine /-test.

I apply this valid inference strategy to consumption data and compute the test robust 

to unknown heteroskedasticity structure by adopting W hite’s (1980) consistent 

variance-covariance matrix. Inverting this test numerically, I obtain Figure 4.1 which
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gives a valid 95% confidence interval for the persistence measure <j>& (-1, 0.98), m uch 

w ider than the one obtained in the above section through routine estimation: [0.58, 1). 

This finding is consistent with Dufour’s (1997) econometric insight that Wald-based test 

statistic is problematic in weakly identified model and for locally almost unidentified 

(LAU) parameters valid confidence intervals must have a  non-zero probability o f  being 

unbounded. In particular, the valid interval includes 0 but significantly excludes very 

high level o f persistence. Note that in the consumption growth data only the first 

auto-correlation seems significant and large in magnitude, being about 0 .2 , fairly close to 

the “Working” effect identified by Working (1960), i.e., the artificial serial correlation 

due to aggregation,. This suggests that the small momentum in the aggregate 

consumption data might be nothing but a statistical artifact.

Likewise, we can implement this valid test strategy for the persistence measure p  in 

the GARCH(1,1) model. In the first step, GARCH(1,1) is estimated by imposing the 

null p  = a  + /3 = p 0 , resulting in the restricted estimates co,a,/3  . A  general 

representation for ht may be written as:

ht = +  a  •  / ( p ,  w,) (4.9)
1 - p

oo
where / ( p ,  wt ) = y  p'~‘ wf+1_f and wt = (wt , wt_x,...) . A  linear approxim ation is taken

i=i

on the variance term  to get, after algebraic manipulations:

ht = c + + (4.10)

where A = a » ( p - p 0).  The valid test for the null hypothesis H 0 : p  = p 0 is the test 

for A = 0 in (4.10). Again, if  the null is true, the third term in (4.10) cannot contribute
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to the variance significantly.

In M C experiment this valid test is computed and shown to cover the null 83.3% o f 

the tim e with 95% confidence interval, not perfect but much better than the routine test 

which gives 49.6% coverage probability. Next I apply this test to residuals from 

consumption data after eliminating the “Working” effect in level. Figure 4.2 gives a 

95% confidence interval by numerically inverting the test statistics, robust to a potential 

misspecification based on the Bollerslev-Wooldridge robust variance-covariance matrix 

(Bollerslev and Wooldridge (1992)). The resulting confidence interval for p  is [0, 

0.98], not only m uch wider than the interval [0.88, 1.04] from routine inference (again 

consistent with Dufour (1997)) but clearly includes 0 persistence.

Given corrected confidence intervals, it seems impossible to further p in  down the 

value ranges for persistence measures <f and p  beyond the valid but w ide ones above. 

There does not seem to be direct empirical evidence in support o f  the existence o f  the 

so-called long-run risk which is supposedly able to increase the equity premium 

requested by economic agents. Instead, m y finding that we cannot reject zero 

persistence in both level and volatility supports the random walk assumption for 

consumption, whose theoretical foundation traces at least back to Hall (1978) and a large 

body o f  literature dealing with asset pricing is built upon this assumption, see Abel 

(1990), Campbell and Cochrane (1999) etc.

To check the robustness, I did a study and report briefly my findings about annual and 

monthly consumption growth data. The source o f  data is BEA. The sample period for 

annual data is from 1929 to 2005 and for the monthly data is from 1959M01 to 2005M12. 

First, due to fewer sampling points for annual data, even the routine estim ation gives a 

quite uninformative confidence interval for ^ [0.11, 1.17] at the 95% significant level 

(but with a point estimate as large as 0.64) which, however, still disagrees with the 

confidence interval [-0.78, 1) given by the valid test. Regarding the volatility process, 

the routine test gives for p  a much tighter confidence interval [0.85, 1.07], which
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differs much from [0.06, 1) the much wider one identified by the valid test. For 

monthly data, what is odd and significantly different from both the annual and quarterly 

data is that the first order auto-correlation turns out to be significantly negative. And 

even the routine estimation fails to find a high level o f persistence for growth expectation 

with resulting point estimate for <) being -0.13, with a 95% confidence interval [-0.51, 

0.25]. The valid test, however, gives three disjoint intervals (-1, 

-0.90]U[-0.29,0.06]U[0.90,1), in which only the second part agrees roughly w ith the 

routine one. For volatility persistence, routine estimation still gives an extremely tight 

95% confidence interval [0.98, 0.99], which implies a very high level o f  persistence but 

the valid one [0.02, 0.97] reveals that there is no such evidence.

Despite much evidence provided here and elsewhere to support that consumption 

m ight simply a random walk as the classical Permanent Income Hypothesis implies, the 

consumption growth expectation might be integrated as Barsky and Delong (1993) 

suggest and interesting asset pricing implications can be derived from this. The valid 

test would not be appropriate if  the underlying growth expectation is truly integrated 

(0  = 1) due to D ickey-Fuller’s (1979) work. To scrutinize this possibility I im pose that 

<1 = 1 and resort to the Median Unbiased Estimator (MUE) o f  i  proposed by Stock and 

W atson (1998) to test the null x = 0 . The MUE is needed since Shepard and Harvey 

(1990) fount that x is biased downward and has a large mass at 0 if  one relies on usual 

estimation method when the true ^ is 1 but x is small. To carry out Stock and 

W atson’s (1998) procedure, we need to impose a technical restriction that the innovations 

to the expectation process and the cyclical shock are serially and m utually independent. 

So we may rewrite equation (4.3) as:

S t  =  x t -1 + e n e t ~ N ( Q , < J 2 )  "
x, = x,_, +  t  ■ rjt , 7]t ~  N(0, a 1)
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Table 4.3 summarizes the MUE o f x with its 95% confidence interval. These results 

unanimously fail to reject the null H 0 : x -  0 . Finally, even if  the argument that these

tests m ay have low power against a very small x leaves a possibility o f  the integrated 

expectation alive, this would, however, explode the equity premium (see Table 4.1) for 

any fixed level o f preference parameters. From Table 4.2, it does seem that an 

integrated expectation (^  = 1), in the limit, allows the risk aversion to approach 1. In 

this scenario, however, the volatility would not be priced (6  —» 0 ). M ore importantly, 

the equity premium would be extremely sensitive to any small change o f  y  , leading to 

an “on-the-edge” solution.

4.4. Conclusion

In this work I show that a recent resolution o f  the equity premium puzzle based on the 

long-run risk, a highly persistent component in consumption growth expectation and 

volatility, depends critically upon a correct statistical inference o f  the persistence level. 

The routine estimation method is not reliable since the employed model in this resolution 

is weakly identified and this may result in spurious evidence for a high level o f  

persistence. A valid inference strategy is applied to this scenario and the valid 

confidence interval reveals very little empirical evidence in support o f  this resolution.
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Table 4.1: Resulting Equity Premium (%) for Various Levels o f Persistence 
Preference parameters are fixed at: y = \Q,y/ = 2,6  = 0.966

0 0.60

p  = a  + 

0.88 0.96 0.98

0 1.72 1.73 1.79 2.47 6.81

0.60 2.24 2.25 2.38 3.74 12.4

4 0.90 5.43 5.52 6.65 18.8 96.6

0.95 10.8 11.2 16.8 76.2 456.4

0.99 58.5 74.7 279 2472 16490

Table 4.2: Required Values o f y to M atch the Observed Equity Premium (about 6%) for 
Various Level o f  Persistence; other preference parameters: yj - 2 , 6  = 0.966.

P = a  + yfl

0.88 0.92 0.96 0.98

0.60 21 18 13 8

<4 0.80 15 13 10 6

0.90 10 9 6.5 4.2

0.99 1.8 1.7 1.6 1.4
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Table 4.3: Testing the Integrated Expectation Based on Median Unbiased Estimator at the 
95% Confidence Intervals: Real Per Capita Consumption Growth D ata

MUE o f  z (p-value) 95% Confidence Interval

Frequency: Annually

QLR 0.059 (0.21) [0,0.328]

M W 0.000 (0.70) [0, 0.163]

E W 0.013 (0.46) [0, 0.239]

Frequency: Quarterly

QLR 0.010(0.37) [0, 0.086]

M W 0.000 (0.89) [0, 0.029]

E W 0.000 (0.51) [0, 0.071]

Frequency: Monthly

QLR 0.010(0.14) [0, 0.049]

M W 0.008 (0.21) [0, 0.049]

E W 0.009 (0.16) [0, 0.049]

Note: QLR  represents the maximum F T statistic, see e.g., Quandt (1960), Andrews 
(1993).

M W  and E W  denote, respectively, the mean and exponential Wald statistic in 
Andrews and Ploberger (1994).
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Valid Inference for Level Persistence
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Figure 4.1: The 95% Confidence Interval for Persistence M easure o f  Level Based on the
Valid Test
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Valid Inference for Volatility Persistence
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Figure 4.2: The 95% Confidence Interval for Persistence M easure o f  Volatility Based on
the Valid Test
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Appendix A Zero-Information-Limit-Condition in the GARCH(1,1) 
Model

A .l A General Proof of ZILC

M a (2007) (or see the second chapter), gives an analytical information m atrix for the 

GARCH(1,1) estimator (d>, a , /3 ):

/  = (1 - a - P Y
2 (o1

A B B

B C D

B D E

(A.1.1)

Where, A = ----------
(1 - p f

B _  1________
(1 - p ) 2 \ - a - f i ’

c _  a 1__________  3(1 + a  + P)  t 2 p
( l - 2 a j 3 - / 3 2) ( l - a - / 3 )  \ - 3 a 2 - 2 a p - / 3 2 ( l - / ? ) 2 ’

D = ___________ <a2 (! + «  + /?)______________ 1 | 3 a p
( \ - a - P ) { \ - 3 a 2 - 2 a p - p 2) ( \ - p 2) \ - a p ~ p 2 1 - 2 a / ? - / ? 2

co2 p  2 a  + P  a  ^
+ ( l - a - p ) 2( l - p 2) T ^ p ~ \ - a p - p 2 ~ \ - 2 a p - p 2 '

co2 (l + «/? + ̂ 2)0  + «  + ̂ ) + 2 p

~  ( l - p 2) ( l - a p - p 2) ( l - c c - p )  \ - 3 a 2 - 2 a p - p 2 + W r

The ‘information’ measure for P , defined to be the inverse o f  its variance by N elson and 

Startz (2007), is derived as:
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,  „  <n_ T  ^  (1 - a - f i ) 2 B 2( 2 D - C - E )  + A ( C E - D 2)
p (,<y> a ,  p )  r , (33) . 2<y2 • a c b 2

It is straightforward to show that

r . P z f f f i _> r O z g U o  as a -> 0
2 (o1 2 co2

A C  — B 2 —» -------^ ----------* 0  as a  —>0
(1-/?)6(1 + P)

However,

B 2 (2D — C  -  E)  + A ( C E —D 2) ->  0 as a ^ O  

This completes the proof o f  (1.4).

(A. 1.2) 

(A. 1.3)

(A. 1.4)
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A.2 A Few Implications When There Is No GARCH Effect

H ere we impose >0=0 to demonstrate a few implications o f ZILC in the GARCH(1,1):

Asy.Var

r Ô)

a

J j

co2(l + a ) 

a 2( l - a )
(1 -3  a 2)

a ( l - 3  a 2) 

a 2( l - a )  
(1 -3  a 2)

(l + a ) ( l - a )  (l + « ) ( l - a )  
(1 -3  a 2)

a  (1 + « ) ( ! -  a )

(A.2.1)

The ‘inform ation’ measure o f f t , again, approaches zero as a  goes to 0:

I J c o , a , / 3 )  =
a 2( \ + a ) ( l - a ) T  

(1 -3  a 2)
-» 0, as a  -»  0 (A.2.2)

co has the same issue as shown in the following:

a 2( \ - a ) T  

co2 (1 + cc)
-> 0, as a  —> 0 (A .2.3)

Furthermore, a  and (3 are highly negatively correlated when a  is small:

Asy.Corr(a>, (3) = - y j l - 3 a 2 —> -1, as a  —> 0 (A.2.4)

However, a  is well identified in that its information measure does not converge to zero:

r  (co, a , p )  = -1 + ~ —>T  ^ 0 ,  a s a —>0 (A.2.5)
( l - 3 a  )
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Appendix B Derivations of Covariances

B .l The Derivation of (2.27) and (2.28)

Using the standard formulas for expectation, covariance and variance, we have:

E t f s l i ]  =  Cov(£?,ef_i) + E[e^E[sl}
= p ^ a r { e 2) F { E [ s 2])2

- a ( ^ 4] - ( ^ 2])2) + ( ^ 2])2

(B .l)

Plug (B .l)  into (2.16) and Sum up the infinite geometric series to get:

p  M ~ 2 
V 1=1 / 1 w F + T ^ W (E[e’ s '- '1+ pE [e- s ^ 1+ "  >

2/? Y  fit-1 F["2 "2 l

£[*,4] . i pr 4 r +r-^r £  F l ((«+P t '  p t 1 (i^,4 ] -  (fife2 i) J ) + ( E t f  i)2))1 p  1 — p  i=1

_ E [ s ,41 i p
1 - p 2 + 1 - p 2 { E t f ]

Pi
e l e l

1 ~ ( a + P ) P
-  (E[e2 ] ) 2 -------^ ----------+  (E[s? ] ) 2 — — }

V L ' V 1 ~ ( a + p ) P  ‘ 1 - P
(B.2)

Plug in the expressions for E[e*], p [ 2, and E [ s 2 ] ,  one can end up with the result 

(2.27). Likewise, one can derive the result (2.28). .
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B.2 The Derivation of Cross-Covariance

By the M DS property o f  the innovation w ,, we have:

£ K -1  • V ,  ] = o => E[{sU -  ht_x)Am ] = 0 => E [ e l xh,.x] = m U ] (B .2.1)

Here, one needs to notice that ht_x = o  + a  -£t-22 + 0 ■ ht_2 = / ( / , _ 2) ,  thus is adapted to 

the information set at time t-2. Since {/,} is an filtration associated with wt , we 

have: • • ■ zd l t ro 3  • • • . Apply the law o f iterative expectation to get:

£ K - .  I h-i ] = E[[wt_x 11,_2 ] I ] = 0, f =  3,4, • •..

Therefore, we have result:

E[wt_x • ht_t ] = 0=* E [{e lx - ht_x)hM ] = 0 => E [ s l xht_t] = E[ht_xht_,],i = 2 , 3 -

In the same way, one can derive the result:

= 0 =» £[(<£■ = 0 => m^l,} = = 2 A -
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Appendix C Transformation in the ARMA and GARCH Models 

Appendix C .l The Derivation of (3.14)

(3.13) is simply, in terms o f  lag operators:

y , = y  •  (1 -  -1 L e t + A .  (1 -  <j>QL y 2 L2 s t + e, (C. 1.1)

Substituting s t = ( 1 -  <f>0L) •  (1 -  Q L ) X y t in to get:

y t = y ( \ -  6 L y x L y , + X * {  1 -  </>0L y x (1 -  0L)~l L2y t + e, (C. 1.2)

By using the identity:

( i - ^ L y ' d - e L ) - '  = [(i - w 1 - a - 8 L y lM<f,0 - d y lu l ( c . i .3 )

We have:

y , = y (  1 - 0 L ) - 'L y t + X . [y~x(1 - ^ L ) ~ l Ly, - y ~ x{ 1 - 6 L y xLy , ] + e, (C. 1.4)
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Appendix C.2 The Derivation of (3.33)

(3.32) m ay be equivalently written in terms o f  lag operators:

ht =  c  + a  •  (1 -  p 0L)~l L w t + X  (1 -  p 0L)~2 L 2w t +  rem a in d e r (C .2.1)

Where, w, = (1 -  p 0L)(\ -  /3L)~l •  s] -  co(l- / ? ) “' and plug in to get:

ht = c + a  •  (1 -  (3L)~{ L e]  + A* •  (1 -  p 0L )~l(1 -  f3L) xl i e ]  + remainder (C.2.2) 

Using the identity similar to (C.1.3) to get:

ht = c + a  •  (1 -  f i L y x L e 2 + X  •  [a x (1 -  p 0L)~l L s 2 -  a 1 (1 -  L e 2 ] +  remainder
(C.2.3)
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Appendix D Derivation of Equity Premium

The derivation o f  (4.5) starts with the Euler equation:

£ , [ e x p { S l n 5 - - g „ ,+ » - w , 1}] = l (D .l)
¥

The marginal rate o f  substitution (MRS) is given by:

mM = 0 \ n S - - g M - ( 1  -0 )rmM (D .2)
¥

Adopting Campbell and Shiller’s (1988) approximation:

~ z , +  g l+1 (D.3)

W here z t is the price-dividend (consumption) ratio; x 0,x,  are approxim ation

constants. The market portfolio return rmt+l is solved w ith the assumption o f

log-normality. Equation (4.5) is then derived by following the classical form ula in 

Campbell (2000) and taking unconditional expectations:

E, (rmJ+1 -  rfJ+1 ) =  - cov, (rm l+l, mt+l) -  0.5 • var, (rm t+l) (D.4)

The risk free rate is given by:

E(rf  ) = - \ n S  + + 0.5 • [(0 - 1  )P 2 -  y  2 ] • <r2n + 0.5 • (B -  l ) ^ Q 2a 2a 2w (D .5)
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The multiplier term before a 2 in (4.5) is a parabola in P:

(D.6)

As in Bansal and Yaron (2000, 2004), I consider the following region o f  preference 

parameters: \ < y  < 10 , y  > \ , and y y  > 1 implying 6 < 0 . For this range o f  

preferences, P  > 1 with t  > 0 ,  and (D.6) is monotonically increasing in  P.

For standard CRRA case, w hen6 = 1, (4.5) becomes:

The multiplier term for <r2 becomes -  0.5 (S  - y ) 2 + 0 . 5 - y 2, a parabola in S. Since 

for y > 1, the case I consider here, S  < 1. For any given level o f  y > 1, the maximum 

equity premium is achieved w hen 5  = 1 , i.e. when z = 0 , the case o f  an i.i.d  

consumption process. As a result, GEU specification with 6 < 0 is im portant to have 

persistence play a significant role in generating the sizable equity premium.

E(rm —rf ) = —0 .5 -[S'2 - 2 ySYrl (D.7)

where S  = 1 + a (l -  y ) with a =
z

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited w ithout perm iss ion .



www.manaraa.com

98

VITA

Jun M a was bom  in Jiangsu Province, People’s Republic o f  China. He received a 

Bachelor o f Arts in Economics from the Nanjing University in June 2001 and a  M aster o f  

Arts in Economics from the University o f  Washington in M arch 2006. He has published 

on the Berkeley Electronic Journal Studies in Nonlinear Dynamics & Econometrics.

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .


