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University of Washington
Abstract
Essays on Inference in Weakly Identified Models in Macroeconomics and Finance
Jun Ma

Chair of the Supervisory Committee:
Professor Charles R. Nelson
Department of Economics

This dissertation is concerned with the implications of weak idenﬁﬁcation in
macroeconomics and finance: the risks of making spurious inferences, strategies for valid
inference, and their economic implications.. In the first essay I show that the standard
estimation and #-test in the GARCH(1,1) model are spurious when the GARCH effect is
weakly identified, implying strong and significant persistence of volatility when in fact
there is little. This spurious inference is partly attributed to the severely under-estimated
standard error for the estimated GARCH effect. A strategy for valid inference is
suggested and seems to give robust results for this case. In my second essay I derive an
analytical asymptotic variance matrix for the GARCH(1,1) Maximum Likelihood
Estimater and show that the Zero-Information-Limit Condition (ZILC) of Nelson and
Startz (2007) holds, accounting for spuriously large ¢-statistics. In the third essay I
propose a general approach to valid inference in weakly identified models based on a
common linear approximation and show that this general test strategy succeeds in
obtaining a correct size in the presence of weak identification. In the fourth essay I apply
this valid test to evaluate a recent resolution of the equity premium puzzle based on a
high level of persistence in consumption growth. My results find little empirical

evidence in support of this resolution.
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Chapter 1: Spurious Inference in the GARCH(1,1) Model When It Is
Weakly Identified”

By Jun Ma, Charles R. Nelson and Richard Startz
11 Introduction

Capturing time-varying volatility is a key element in modeling time series data,
especially for financial time series data. The ARCH (Autoregressive Conditional
Heteroskedasticity) family, first proposed by Engle (1982), has been widely adopted
to extract a latent volatility process and predict its future movement, especially since
the generalization to the GARCH model by Bollerslev (1986). In allowing the
conditional volatility to be linearly dependent upon both past squared shocks and the
past conditional volatilities, GARCH type models can generate rich dynamics with
few parameters. Indeed, the GARCH(1,1) is usually sufficient to provide a good fit
(see Bollerslev, Chou and Kroner (1992)). '

Nelson and Startz (2007) have shown that when identification of one parameter is
conditional on another inference for the former will be misleading if the
Zero-Information-Limit Condition (hereafter ZILC) holds. In models where ZILC
holds, standard errors tend to be understated when the identifying parameter is small
enough, no matter how large a given sample size. Examples include the ‘weak
insttument’ problem, ARMA models with near cancellation, and certain nonlinear
regression models. In this paper we show that ZILC holds in the GARCH(1,1)
model and that estimated standard errors are too small when the ARCH effect is of the
size commonly reported in the empirical literature.  As a result, the actual size of the
t-test for the GARCH coefficient is far too great, rejéction of the true null hypotheses
occurring too often. Thus, researchers unaware of this spurious effect may be
tempted to infer that the persistence due to the GARCH effect is strong when in fact it

is absent.

* A Paper based on this chapter has been published on the Studies in Nonlinear Dynamics & Econometrics: Vol. 11:
NO. 1, Article 1.
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As a response to the danger of spurious inference we propose an empirical
strategy based on a pure ARCH(g) approximation to GARCH(1,1) and show how it
applies to real datasets.

This paper is organized in the following way: Section 1.2 demonstrates that ZILC
holds in the GARCH(1,1) model. Section 1.3 presents evidence by Monte Carlo
experiments to document the underestimation of standard errors when identification
of the GARCH effect is weak. Section 1.4 proposes the empirical strategy and
evaluates its validity. Section 1.5 presents the results for some real datasets.

Section 1.6 concludes this paper.

1.2 The Zero-Information-Limit Condition in the GARCH(1,1) Model

The archetypal GARCH(1,1) model may be written':

g,: b &, ~iid.N(O)) (1.1)

h=w+aei+fh_ 1.2)

Note that 4, is the conditional variance and is driven by past realizations of &, with

added persistence determined by f. In the case =0 the model reduces to the
pure ARCH(1) model, and in the case a =0 the data are homoskedastic and the
GARCH effect f is not identified. Following the literature, we impose the
parameter restrictions @ >0 and |a+/f|<1 so that the underlying process is
strictly stationary with a finite second moment. Note that the asymptotic theory of
GARCH(1,1) does not critically depend upon the latter inequality restriction (e.g., see
Lumsdaine (1996), Jensen and Rahbek_ (2004)), but we impose this restriction to have
a finite unconditional variance for &, and evaluate its estimation performance.

Following the standard treatment in Hamilton (1994), we present the following
ARMA(1,1) representation for the GARCH(1,1) process:

! The mean of equation (1.1) is set to be zero without loss of generality since the information matrix is
block-diagonal, as shown by Bollerslev (1986).
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& =o+(a+pf) e +w - w, (1.3)

£,

The innovation w, =¢.”—h, = h,[( Jh—

(MDS) with a time-varying conditional variance. Thus the GARCH(1,1) process
turns out to be a particular ARMA(1,1) process with (a+f) being the AR

2 _1] is a Martingale Difference Sequence
g

coefficient and £ being the MA coefficient, though the shocks are non-normal and
heteroskedastic. _

Nelson and Startz (2007) show that ZILC holds in an ARMA(1,1) model as the
absolute difference between the AR coefficient and MA coefficient approaches zero.
If ZILC applies to the GARCH(1,1) model as well, the reported standard error of the
MLE estimator ,B will tend to be smaller than the true asymptotic standard deviation

when the idexitifying parameter a is small. To check whether ZILC holds one
needs the asymptotic variance but no closed form expression exists in the literature.
Ma (2007) (Chapter 2 of this dissertation) derives an analytical approximation for the
case that a is small and an exact expression that may be evaluated by stochastic
simulation for comparison. Based upon Ma’s result it is straightforward to show that

the inverse of the asymptotic variance of 3, the ‘information’ measure of Nelson and

Startz (2007), goes to zero as « approaches zero, i.e., ZILC holds:
1in31ﬁ(a),a,ﬁ)=0 (1.4)

Appendix A.1 gives a formal proof of (1.4) based upon Ma’s (2007) analytical

result. Furthermore, @ has the same issue as ,3, since it is also subject to ZILC.
Indeed, Ma’s approximation establishes that these two estimates are highly negatively
correlated when a is small; Appendix A.2 illustrates these algebraic results using

the special case of f=0. Asymptotic theory does hold in the GARCH as sample
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size grows, but for any given sample size one can find a value of o small enough
that the ZILC effect on standard errors will be apparent. Finally, the identifying

parameter a itself is still well identified, in the sense that ZILC does not hold.

1.3  Evidence of Spurious Inference from Monte Carlo Experiments2

We implement a series of Monte Carlo (MC) experiments to investigate whether
spurious inference occurs when the GARCH(1,1) model is weakly identified. There
have been a few papers which examine the performance of GARCH estimates in a
finite sample through MC experiments but the focus has been on the well identified
case; see Hong (1988), Bollerslev and Wooldridge (1992), Lumsdaine (1995), and
Fiorentini, Calzolari and Panattoni (1996). In the empirical literature it is standard
practice to rely on estimated standard errors for the GARCH parameter to make the
inference that f is non-zero and in the typical case large with a small confidence
interval. Thus, we are interested here in the potential for spurious inference when |

there is in fact no GARCH effect, or it is only moderate.

1.3.1 Inference when there is no GARCH effect

In this sequence of MC experiments, data is simulated from the GARCH(1,1) process
defined by equation (1.1) and (1.2) with three sets of parameter values:

0] 1 1 1
a |=10.01]]{0.0510.10
p 0 0 0

The choices of a are motivated by the estimates typically reported in the empirical

literature; some classical examples are Bollerslev (1987), Baillie and Bollerslev (1989)

2 The estimation procedure is implemented by our own MATLAB codes, independent from the GARCH Toolbox
inMATLAB. We tried both the restricted code which restricts the estimates to be positive through an exponential
transformation and the unrestricted code which does not have this restriction.  Similar results are obtained in both
cases. Here we only report the results from the unrestricted code. Codes in both cases are available from the
authors upon request. Our major findings can also be replicated in both Eviews 5.1 and the SPLUS Finmetrics
Library 1.0.
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and Engle, Ng, and Rothschild (1990). Since S is O in these experiments there is
no GARCH effect and the process is actually an ARCH(1). The scale parameter @
is normalized to be unity. For each set of parameter values, we have three sample
sizes T = 500, 1000 and 5000, respectively. For all 9 experiments, 1000 simulated
paths of sample data of length T are generated. Table 1.1 gives the empirical sizes of
t-test, Likelihood Ratio (LR) test, Lagrange Multiplier (LM) test at the nominal 5%
level for all parameters and the frequency Schwarz Information Criterion (SIC)
chooses GARCH(1,1) over ARCH(1).

In Table 1.1, when the ARCH coefficient is 0.01 the actual size of t-test for g is
nearly 50% even for a large sample size. However, for sufficiently large @, and for

sufficiently large sample size, the size distortion is greatly reduced. Note that the

size distortion for & is as large as that for §. Size distortion for & is not as large

as for ,3 , although not completely absent.

Fortunately for practitioners, the LR and LM tests perform much better than the
t-test. The former indicates that the weakly identified model does not fit much better
than the restricted model, hence little improvement in the likelihood value. The
better performance of the LM test can be traced to the fact that it is calculated under
the restriction on the weakly identified parameter; see Zivot, Startz and Nelson (1998)
for discussion of this in the weak instrument case. Ma and Nelson (2007) are
exploﬁng approaches to obtaining valid tests based on what would be the
Anderson-Rubin test in a linear approximation to a weakly identified mode! where
ZILC holds. Note that the LM test in this context is a chi-square test for serial
correlation in the squared residuals from the constrained model, in this case ARCH(1).
SIC performs well in model selection which is consistent with findings on lag
selection reported by Lutkepohl (1991). ‘

To understand why the #-statistic does such a poor job, we separately examine the

denominator and the numerator. In Table 1.2 we compare the median of the

estimated standard error of 3 in the MC sample with the actual standard deviation

of B in the MC sample as well as with two computed approximations to ‘the
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asymptotic standard deviations, one using Ma’s analytical approximation and the

other evaluated by stochastic simulation; see Ma (2007) for details. This comparison
is for the fixed sample size 7= 1000. The standard error of f is indeed severely
underestimated. For example, when @ =0.01, the median estimated standard error
of [3 is only about one tenth of the true (asymptotic) standard error.  As pointed out
by Nelson and Startz (2007) for the ARMA case, this is more surprising since
variation in ﬁ is bounded by the stationarity requirement although the asymptotic
formula does not take this into account. However, the estimated standard error for
f is so much underestimated that it is well below the actual standard deviation, .
being about half of it Even when @ =0.10 the median estimated standard error of
ﬁ is still well below both the asymptotic standard error and the actual standard
deviation. While & has exactly the same issue, this is not true for & .

We present thev‘ histogram of /} in Figure 1.1 from the experiment‘ when
o =1,a=0.01/4=0 and sample size 7= 1000, corresponding to the first three rows
in Table 1.2. An interesting “pile-up” phenomenon appears which reflects an
upward bias in 4 : the median of ﬁ is 0.3207. At the same time @& is downward
biased with the median being 0.6889.

We also plot the estimated standard error of B against B in Figure 1.2. Itis

evident that there is a strong negative correlation between the absolute value of /;’
and its standard error. Nelson and Startz (2007) (Chapter 3 of this disscitation) show
that a general property of models in which ZILC holdsr is dependence between
absolute size of the numerator and denominator of the t-statistic, the sign of the
correlation determining whether the r-test is under- or over-sized. In this case, large
values of ﬁ are accompanied often by very small estimated standard errors, and vice
versa, so there is an excess of large ¢-statistics and the test size is too great.

Another finding in the MC experiment is that very often the individual Profile
Log-Likelihood Function (PLLF) displays multiple maxima (See Figure 1.3 for two
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7

typical examples). The PLLF is obtained by maximizing the log-likelihood function
(LLF) subject to pre-specified values of 5. This suggests that practitioners should

be aware of the possibility of getting stuck in a local maximum in lieu of a global one
when relying on a traditional gradient-based optimum searching algorithm. In our
experiment we start optimizations with various initial values to avoid this pitfall.
Furthermore, the PLLF varies little as the parameter is varied. Interestingly,
Figlewski (1997) finds that it is difficult to get the algorithm to converge when
estimating GARCH(1,1) for monthly stock return because the LLF is quite flat.

1.3.2 When there is a moderate GARCH effect

It is important to note that ZILC holds whenever the ARCH coefficient a is small,
regardless of the magnitude of true . In this sequence of MC experiments we

simulate data from the GARCH(1,1) process defined by equation (1.1) and (1.2) with
moderate GARCH effect:

@ 1 1 1
a|[=10.0110.05][10.10
B 0.5 0.5 0.5

The sample size is fixed at 1000 and the number of simulation is 1000. Table 1.3

presents our major findings. No major difference has been found compared with

Table 1.1 and 1.2. The standard error of 3 is underestimated, leading to a very

large size distortion of t-test. Besides, ﬁ is upward biased (See Figure 1.4) and the

median is 0.6834. The LR and LM test again perform much better than ¢-test and

SIC is quite accurate in model selection.

1.3.3 Persistence in the GARCH{(1,1) model

In the GARCH(1,1) model (a+f) determines how long a random shock to
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volatility persists. To see this we rewrite equation (1.2) to obtain its AR

representation:

h =w+(a+f)h_ +aw,, : s

Where w,, =¢,,” —h,,. In empirical applications it is often this persistence in

volatility that is of great interest and the magnitude of it usually makes a significant
difference in terms of economic implications. For example, Bansal and Yaron (2000)
present a potential resolution of the equity premium puzzle based on a large value of
(@+p). So it is important to note that (a +,B) is upward biased and has an
underestimated standard error when a is small. Figure 1.5 and 1.6 give the
histograms of (4&+f) with parameter | values w=La=0.0,56=0
andw =1, =0.01, 5 =0.5, respectively, and T = 1000. Table 1.4 reports the size
distortion of the -#-test for (a+ ) under both cases of no GARCH and moderate
GARCH effect when the model is weakly identified, for the fixed sample size T =
1000. The size distortion of (4 +f3) is comparable to that of 3. Table 1.4 also
gives the power of ¢-test for the Integrated GARCH (IGARCH) process’. Notice that
the power is very small when @ is small. Furthermore, given the samea , the

power is even smaller when the true f increases.

1.3.4  Forecasting performance of the GARCH(1,1) model when it is weakly
identified

Due to its practical interest, here we evaluate both.the in-sample and out-of-sample
forecasting performance of the GARCH(I,I)v model when it is weakly identified.
The in-sample forecasting is simply the estimated volatility which can be easily
computed once the parameters estimates are obtained. Out-of-sample forecasting for

horizon £ is also straightforward as shown below:

3 The test is asymptotically valid since the GARCH estimates have regular properties even for an IGARCH
process. See Lumsdaine (1995, 1996) and D. Nelson (1990).
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Efh,, 1= 03 (@+B) +(@+B)h, (L6)
i=0

And }imzat[ht+h]=l—C(J—’given la+pl]1.

We work on the MC experiment of @ =1, =0.01,56=0,T=1000. Since the
ARCH(1) model is correctly specified given g =0, we use the ARCH(1) model as a

benchmark. At the same time, we estimate the constant unconditional variance as

T
another benchmark: CONST.h = % Z gl
t=1

Figure 1.7 presents a typical comparison of the in-sample forecasted volatility by
three methods along with the true volatility (the illustrated sample period is chosen to
be short to make the difference clear). The estimated volatility by the ARCH(1) and
the constant unconditional variance measure resemble the underlying volatility
procéss quite well, indicating a nearly homoskedastic process. However, the
estimated volatility by the GARCH(1,1) displays a very persistent pattern. The
out-of-samplé comparison given by Figure 1.8 demonstrates the same idea.

We compute the Root Mean Squared Error (RMSE) across MC samples to
summarize thé predicting accuracy for various methods. Table 1.5 gives the
in-sample RMSE and out-of-sample RMSE for GARCH(1,1), ARCH(1) and the
constant unconditional variance measure. The in-sample comparison seems to be
counter-intuitive to the coinmon sense that the in-sample fitting should be always

better with a more general model. The analogy to a linear estimation explains the
puzzle. The forecasting measureZ(h, - I:,)2 here we use corresponds in a linear

estimation to the Explained Sum of Squares (ESS) not the Sum of Squared Residuals

(SSR), whose counterpart is Z(‘s',2 —I;,)2 instead. As the more general model

decreases Y (&; —ﬁ,)z, > (h, —h)?, however, has to increase, given the fixed
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Total Sum of Squares (TSS) Y (& —h,)* :

Yt -h) =Y (b —h) +Y (el -h) +2D (h,—h)el -h)  (1.7)

Where, the term Z(ﬁ: ~h)(E} -I;,) would be zero by construction in a linear

context. In this nonlinear context, the value of this term is also close to zero in our
MC experiment.

As for the out-of-sample forecasting performance, the GARCH(1,1) is also worse
than both the ARCH(1) and constant variance measure for short horizons but all of

them have almost the same performance for long enough horizons, indicating a well

estimated unconditional variance % . ~ even when the model is weakly
_a_

identified. This is in contrast to Starica (2003) who investigate the forecasting
performance of GARCH(1,1) model in the S&P 500 index return data and finds that it
does a poor job in predicting the long run volatility during the period of his study.
However, we want to point out that our MC experiments are implemented assuming a

constant unconditional variance which may fail to hold for real data.

1.4 An Empirical Strategy for Detecting ZILC in the GARCH(1,1) Estimation

As suggested by our findings, a preliminary step to see whether one specific
GARCH(1,1) estimation is subject to ZILC is to take a look at & and the sample
size since as a or sample size increases the ZILC issue becomes less severe. To
facilitate this procedure, we provide a reference table (Table 1.6) for practitioners.
We note that either sample size or the ARCH effect must be larger than generally
encountered in the empirical literature for the ZILC problem to become moot.

In our approach to GARCH(1,1) estimation, when & and the sample size are in
the left upper area of Table 1.6 We propose to estimate the ARCH(g) process and
compare with the GARCH(1,1) estimation to see if there is any large discrepancy in

the implied autocorrelation function (ACF) for A, as a practical strategy for
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detecting a spurious result in estimating the weakly identified GARCH(1,1). The
ARCH(g) process bears no ZILC concem since identification is not conditional on
other parameters, as shown by its AR(q) representation:

2 _ 2 2 2
E, =@+, tQE,, tota g W, (1.8)

The GARCH(1,1) can be represented by an ARCH(o0) process theoretically:

2
El=@+a - +f b +w,

@ ~ (1.9)
=t a-c af i A af T ek W,

1-p

In practice, an ARCH(q) process with sufficiently large lag g is able to approximaté
the GARCH(1,1) process very well. We verify this through a MC :experiment.

We generate 1000 data paths of sample size 7= 1000 by equation (1.1) and (1.2)
with true parameters valuesw =1,a =0.3, f, =0.6. Given reference Table 1.6, this
GARCH(1,1) process is well identified. This is also confirmed by the estimation
result: the actual size of t-test for B is 5.1% for nominal size 5%. Besides, 8 is
around its true value and there is no upward bias. For each data path, we estimate
both the GARCH(1,1) and ARCH(g). To choose a proper lag q for the ARCH(g), we
rely on both the SIC and LM test. We estimate the ARCH(g) up to lag 10 and find

an optimal lag where SIC is minimal and LM test is not sigaificant at 5% levei.

After estimations, we compute and compare the theoretical ACF of the -

conditional variance implied by GARCH(1,1) and ARCH(q) estimates. Equation

(1.5) shows that (a + ) fully determines the persistence of the conditional variance

process in the GARCH(1,1). However, for the ARCH(q), the implied conditional
variance has the ARMA(g, g-1) representation:
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a
A-aL-..—a, IP)h, -~—— ) =(— (22— .~ (-—2)"a,w,,
1 -a, Q, a,

1

(1.10)

We compare the median of theoretical ACF for the conditional variance across MC
sample between the GARCH(1,1) and ARCH(g) estimations. We confirm that the
ARCH(q) can approximate the GARCH(1,1) fairly well (see Figure 1.9). In the next

section we examine some real datasets and experiment with this approach.

1.5 Issues in Real Data Analysis and the Example of S&P 500 Index Returns

Numerous applications of GARCH(1,1) appear in the literature and some
generalizations are as follows. Very frequently a large value of /§ is reported,
accompanied by a small standard error and large ¢-statistic. It is not uncommon to
see a small ¢ along with a not Qery large sample size, the combination well in thé_
area of Table 1.6 that suggests the danger of spurious inference. We cannot provide
an explanation of the very frequently reported large values of ﬁ solely based on the

results in this paper (the upward bias found in our Monte Carlo experiments are not
sufficiently extreme). Dueker (1997) suggests that this may be due to the leptokurtic
characteristic of the real data. Other studies such as Hamilton and Susmel (1994)
and Cai (1994) attribute this to abrupt regime shifts of the unconditicnal variance.

In Engle, NG, Rothschild (1990), they estimate a GARCH(1,1)-mean model for
monthly value-weighted stock index return data from August 1964 to November 1985.
‘The number of observations is 256 and & is slightly above 0.05. In contrast, /§ is

quite large along with a very pronounced f-statistic. Their GARCH point estimates

along with the #-ratios (in parentheses) are:

& =1.9348(1.68) & =0.0518(1.79) £ =0.8461(12.6)

In the first of two examples from Bollerslev (1987), the GARCH(1,1) estimation of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

daily U.S. dollar versus the British Pound exchange rate return data from March 1,
1980 to January 28, 1985 has the following point estimates and estimated standard

errors (in parentheses):
®=0.96-10°(0.46-10°) @ =0.057(0.017) B =0.921(0.023)

And the GARCH(1,1) estimation of monthly S&P 500 index return data from 1947

January to 1984 September is (standard errors are in parentheses):
#=0.17-107(0.13-107%) & =0.074(0.045) B =0.768(0.148)

The former estimation gives & as small as 0.057 with a sample size 1245. At

the same time, [3 is very large and its estimated standard error is very small. The

second estimation gives a slightly larger @ and a large /Ai still, but with a much

smaller sample size 453, and in this case neither @ nor a seems to be significantly
different from zero at 5% level by a traditional -test’.

We take the monthly S&P 500 index return data as an example of our
investigation. This dataset is obtained from the Eviews 5.1 DRI Database. We
restrict our investigation to the sample period from 1947 January to 1984 September
to make our estimation result comparable to Bollerslev (1987). Since the monthly
price data is obtained by averaging the daily prices, there is a significant first order
moving average correlation in the first moment equation, which is well known as the
“Working Effect” (see Working (1960)). Therefore, we first estimate the MA(i)
process for the return level data in EVIEWS 5.1 and ’store the residuals:

¢, =0.005278(0.001901) 4§, =0.23694(0.052461)

* The test of g=0 is non-standard, e.g., see the comment in Bollerslev, Engle and D. Nelson (1994). Davies
(1977, 1987), Hansen (1996), Beg, Silvapulle, Silvapulle (2001) and Andrews (2001) have provided detailed
discussions.
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¢, 1s the constant in mean equation and 6, is the MA(1) coefficient. The White

heteroskedasticity-consistent standard errors of estimates are in parentheses.

As suggested by Bollerslev (1988) as a routine check for the heteroskedasticity,
the Ljung-Box test of squared residuals at log 10 is computed to be 26.9637, which is
significant at 5% level. We provide two GARCH(1,1) estimation results. One is
from EVIEWS 5.1 by directly estimating the MA(1) — GARCH(1,1) model. The
other one is obtained by fitting the residuals from the first moment equation into the
GARCH(1,1) model defined by equation (1.1) and (1.2) using our MATLAB code.
Estimation results are reported below. To account for possible misspecification of
conditional distribution for real data, we report the robust standard errors proposed by
Bollerslev and Wooldridge (1992):

EVIEWS

=0.16-107(0.14-107) a =0.078(0.049) B =0.771(0.169)
MATLAB

@=0.16-10(0.14-107) @ =0.077(0.048) B =0.773(0.169)

These GARCH(1,1) estimations are quite similar to Bollerslev (1987) and all of them
imply a persistent volatility process in that &+ 3 ~0.85. However, as we point out,
the estimation result under this circumstance is probably subject to ZILC. To make a
comparison, we fit the residuals into the ARCH(g) model. To determine the optimal
lag, we estimate the ARCH(g) up to lag 10 and then identify the optimal lag where
SIC achieves a local minimum and LM test is not significant at 5% level’. This
procedure results in the ARCH(S) and the estimation result is reported below. Again
we report the robust standard errors proposed by Bollerslev and Wooldridge (1992):

% We also use Akaike Information Criterion (AIC), which results in the same lag. When we look at the 6% up to
10" ARCH estimates in the ARCH(10) estimation, none of them is significant and the sum of them is negligibly
small.
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4,=073-10° @ =0041 &,=0 6,=0019 &, =0008 &, =0.251
(021-107) (0.044) (0.173) (0.085) (0.035) (0.113)

The only significant lag is the 5™ lag with a large magnitude. We find the same
feature in the CRSP equal-weighted excess return data used in Kim, Nelson and Startz
(1998). Oddly, Baillie and Bollerslev (1989) document a similar feature in the
weekly exchange rate return data. |

The theoretical ACF for the volatility process implied by both GARCH(1,1) and
ARCH(5) estimates are given in Figure 1.10. The first order autocoﬁelation is 0.129
implied by the ARCH(5) estimation in a sharp contrast to 0.850 implied by the
GARCH(1,1)estimation. The estimated conditional variance {I;,},i, from both
estimations also differ greatly (See Figure 1.11). The PLLF for the GARCH(1,1)
estimation is given by Figure 1.12. The PLLF turns out to be bimodal.

We have also studied other datasets and the results are available upon request.
Overall, @ is small but the sample size is not large enough to escape from the ZILC
concern. Applying the proposed empirical strategy reveals a discrepancy between
the theoretical ACF for the conditional variance implied by GARCH(1,1) and

- ARCH(g). For example, Bailliec and Bollerslev (1989) note that there is almost no
GARCH effect in the monthly exchange rate return data. However, the GARCH(1,1)

estimation of the monthly exchange rate return data of U.S. dollar versus Japanese

Yen in the sample period from 1971 January to 2006 January results in a large ﬁ

with a very small standard error. Instead the ARCH(g) approach finds little
persistence and the PLLF of the GARCH(1,1) is quite flat across the whole admissible

regionof f.

1.6 Conclusion

We show that the Zero-Information-Limit Condition (ZILC) formulated by Nelson
and Startz (2007) holds in the GARCH(1,1) model so that the model is weakly

identified when the ARCH coefficient is small. We present a sequence of Monte
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Carlo experiments and find that the GARCH estimate tends to have an underestimated
standard error together with an upward bias when the ARCH coeflicient is small even
when sample size becomes very large, which results in a large size distortion of the
t-test. 'We propose an empirical strategy for detecting ZILC and apply it to the real
data. Our finding suggests that the concern raised by ZILC is quite relevant in

empirical work.
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Table 1.1: Size of Various Tests at 5% Level and SIC in GARCH(1,1)

=500

T= 1000

T'=5000

True Parameter Values: o =1, =0.01,6=0

t-test for w 47.5% 45.2% 44.4%
t-test for a 21.8% 20.1% 20.8%
t-test for [ 48.7% 45.6% 44.5%
LR test for f 13.0% 10.9% 8.3%
LM test for f 4.7% 52% 4.6%
SIC correct 5.7% 2.9% 1.0%
True Parameter Values: @ =1, =0.05,6=0 -
t-test for @ 38.3% 35.7% 16.8%
t-test for a 19.8% 18.2% 6.7%
t-test for f 41.3% 36.0% 17.5%
LR test for f 11.1% 9.9% 7.3%
LM test for £ 4.7% 6.0% 4.3%
SIC correct 5.1% 2.9% 0.8%
| True Parameter Values: w=1,2=0.10,5=0
t-test for @ 27.3% 19.4% 7.9%
i-test for a 12.6% 10.2% 5.2%
t-test for f5 30.6% 21.0% 8.5%
LR test for S 8.9% 8.4% 5.6%
LM test for f 4.5% 6.0% 4.5%
SIC correct 3.7% 23 0.1%
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Table 1.2: Estimated Standard Error versus True Asymptotic Standard Deviation
True Parameters values: @ =1, =0.01,0.05,0.10, 5 =0, T'= 1000

e . Standard ] .
Identifying Model Median of o Asymptotic  Asymptotic
) Deviation
Parameter =~ Parameters  Estimated ] SDusing  SD evaluated
of Estimates )
a Estimates S.E. ) Ma approx.  numerically
in MC
@ 0.3226 0.6161 3.1621 3.3549
0.01 a 0.0266 0.0381 0.0313 0.0332
ﬁ 0.3164 0.6175 3.1303 3.3192
@ 0.3022 0.5532 0.6317 0.6712
0.05 @ 0.0349 0.0401 0.0300 0.0374
B 0.2874 0.5402 0.5993 0.6364
@ 0.2686 - 0.4083 - 0.3164 0.3513
0.10 a 0.0408 0.0436 0.0282 0.0411
3 0.2394 0.3719 0.2817 0.3142
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Table 1.3: Inference for § in GARCH(1,!1) with Moderate GARCH Effect
True Parameters Values: @ =1, @ =0.01,0.05,0.10, 56 =0.5, T = 1000

19

True value of a

0.01 0.05 0.10
Standard Deviation of B
Asy. (analyt. approx.) 2.0400 0.3957 0.1887
Asy. (num. eval.) 2.0665 0.4237 0.2149
Std Dev in MC sample 0.5499 0.4485 0.2768
MC median S.E. 0.2566 - 0.2332 0.1818
Size of tests of null hypothesis f =0.5 at nominal 5% level
t-test 42.7% 29.2% 16.1%
LR test 8.4% 7.0% 6.7%
LM test . 6.3% 5.4% 6.3%
SIC correct 2.7% 2.0% 1.3%
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Table 1.4: Inference for (a+ /) in GARCH(1,1)
Sample Size 7'= 1000

20

True parameters values: @ =1, =0.01,0.05,0.10, 56 =0

True value of o

0.01 0.05 0.10

Standard Deviation of & + [3

Asy. (analyt. approx.) 3.1402 0.6303 0.3130
Asy. (num. eval) 3.1302 0.6301 0.3114
Std Dev in MC sample 0.6101 0.5292 0.3667
MC median S.E. 0.3188 0.2851 0.2404

Size of t-test of null hypothesis @+ f equals its true value at nominal 5% level

t-test 45.6% 35.2% 19.5%
Power of ¢-test for the hypothesis o+ i =1 at nominal 5% level

t-test 40.4% . 56.1% 80.1%

True parameters values: @ =1, =0.01,0.05,0.10, 5 =0.5

True value of a

0.01 0.05 0.10

Standard Deviation of &+ £

Asy. (analyt. approx.) - 2.0519 _ 0.4067 0.1957
Asy. (num. eval.) 2.0262 0.3817 0.1741
Std Dev in MC sample 0.5439 0.4387 0.2638
MC median S.E. 0.2522 0.2273 0.1677

Size of t-test of null hypothesis a + f equals its true value at nominal 5% level
t-test 42.3% 29.2% 16.5%
Power of ¢-test for the hypothesis o+ =1 at nominal 5% level

t-test 25.1% 38.9% 69.8%
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Table 1.5: Forecasting Performance of GARCH(1,1)
o=1L,a=0016=0,T=1000

S
RMSE = \/ é 2 (Forecasth, ~True.,)’
i=1

GARCH(1,1) ARCH(1) Constant
In-sample RMSE
Whole period 0.0895 0.0678 0.0485
Out-of-sample RMSE for different horizons
Horizon =1 0.0714 0.0486 0.0485
Horizon =3 0.0634 0.0495 0.0495
Horizon = 6 0.0582 0.0494 0.0494
Horizon =9 0.0553 _ 0.0484 0.0485
Horizon =12 0.0541 0.0487 0.0487
Horizon = 24 0.0526 0.0493 0.0493
Horizon = 48 0.0498 0.0482 0.0482
Horizon = 96 0.0500 0.0490 0.0491

Table 1.6: The Reference Table for Practitioners - Empirical Size of #-test for # in
the GARCH(1,1) Model, @=1,6=0

Sample ' True value of «

Size 0.01 0.05 0.10 0.15 0.20 0.25 0.30
T=250 52.8% 457% 379% 29.7% 244% 214% 21.5%
T=500 48.7% 413% 30.6% 22.0%- 174% 15.9% -

T=1000 45.6% 36.0% 21.0% 151% 11.9% - -
T=5000 44.5% 17.5% 8.5% 6.8% - - -
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Figure 1.1: Histogram of ,8 from the MC Experiment of GARCH(1,1) for
o=1a=001,5=0,T=1000
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Figure 1.2: Scatter Plot of Estimated S.E. of ,5‘ against £ from the MC Experiment
of GARCH(1,1) for =1, =0.01, 5 =0,7 =1000
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Figure 1.3: Two Examples of Profile LLF from the MC Experiment of
GARCH(1,1) for w=1,a =0.01, 5 =0,T =1000
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Figure 1.4: Histogram of B from the MC Experiment of GARCH(1,1) for
o=1,a=0.010=0.57T=1000
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Figure 1.5: Histogram of (& + f8) from the MC Experiment of GARCH(1,1) for
w=1,a=001,=0,T=1000
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Figure 1.6: Histogram of (4 + ) from the MC Experiment of GARCH(1,1) for
w=1,a=00L4=05,T=1000
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Figure 1.7: A Typical Comparison of the In-Sample Volatility Forecast from the MC
Experiment of GARCH(1,1) for @ =1,a =0.01,56 =0,7 =1000
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Figure 1.8: A Typical Comparison of the Out-of-Sample Volatility Forecast from the

MC Experiment of GARCH(1,1) for w =1,& =0.01, 5 =0,7 =1000
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Figure 1.9: The ACF of the Conditional Volatility from the MC Experiment of
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Figure 1.10: The ACF of the Conditional Volatility Implied by GARCH(1,1) and
ARCH(S5) Estimates for S&P 500 Index Return Data
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Figure 1.11: The Estimated Conditional Volatility from GARCH(1,1) and ARCH(5)
Estimation for S&P 500 Index Return Data
(A typical sub-sample is presented here to facilitate the visualization.)
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Figure 1.12: Profile LLF of GARCH(1,1) Estimation for S&P 500 Index Return Data
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Chapter 2: A Closed-Form Asymptotic Variance-Covariance Matrix for
the Maximum Likelihood Estimator of the GARCH(1,1) Model

2.1 Introduction

The GARCH(1,1) model has become a benchmark in modeling time-varying
volatility since its introduction by Bollerslev (1986). However, its estimation is
usually implemented by numerically maximizing the log-likelihood function and the
involved nonlinearity makes both MLE and its asymptotic variance unavailable in a
closed form. As a result, different numerical optimization procedures often lead to
significantly different values for both MLE and its standard error. Even for the same
numerical value of MLE, much different standard errors are frequently returned by
various software packages. In Brooks, Burke and Persand (2001) they show that the
GARCH(1,1) estimation of daily German mark/British pound exchange rate data
returns 0.0725 in MATLAB as the estimated standard error for the GARCH estimate,
in a sharp contrast to 0.0166, the one from TSP, given exactly the same GARCH point
estimates. Furthermore, the lack of a closed-form asymptotic variance makes it
difficult to study the property of GARCH MLE. |

This paper works out a closed-form asymptotic variance matrix for GARCH(1,1)
MLE in terms of only model parameters so as to provide an analytical formula to
compute the standard error for GARCH estimates. This asymptotic formula has the
advantage of agreeing upon the values of standard errors given the same point
estimates. More importantly, the resulting analytic asymptotic variance shows
clearly that the inference of the GARCH parameter depends functionally on the
ARCH parameter, approaching zero continuously as the ARCH parameter goes to
zero. This means that the GARCH(1,1) model satisfies the Zero-Information-Limit
Condition formulated by Nelson and Startz (2007), which makes the inference
questionable when the ARCH parameter is small. Ma, Nelson and Startz (2007)
(chapter 1 of this dissertation) carefully investigate this issue.

The consistency and asymptotic normality of the GARCH(1,1) MLE have been
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well established by Bollerslev and Wooldridge (1992), Lee and Hansen (1994), and
Lumsdaine (1996), which are discussed in section 2.2. A local approximation is
taken in the information matrix to avoid taking the expectation of a nonlinear form.
Consequently, the derivation breaks down to the derivations of the auto-covariance
and cross-covariance structures for the squared GARCH process, which are derived in
section 2.3. This results in a closed-form information matrix in terms of only model
parameters. The asymptotic variance-covariance matrix is readily available by
taking the inverse of this information matrix. In section 2.4, I carry out a Monte
Carlo experiment and show that this formula works very well. Section 2.5

concludes.

2.2 The Asymptotics of GARCH(1,1) MLE

An archetype GARCH(1,1) model may be written as®:

e=h, &, & ~NO)) @.1)

h = co+oz-ez-12+,8-h,_l (2.2)

Here, I assume £, is independently drawn from a standard normal distribution.

Assuming normality allows me to work on the MLE and have known expressions for -
the higher moments, which are required for the derivations.

Write up the log-likelihood function:

L(0)=T _'il, 9) ’ 23)

1 1 1g”
1(8)= —Elog 2z —Elogh, —5—;‘- 2.4)

¢ The mean of equation (1) is set to be O without loss of generality since the information matrix is block-diagonal,
as shown by Bollerslev (1986).
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Where, 6 =(w,a, ) and éT maximizes the log-likelihood function for a given
sample data {¢,,¢,,":-,&,}. In practice, the evaluation of (2.3) and (2.4) conditions
upon an initial assignment of 4,. In spite of various choices of A, the difference

disappears asymptotically as long as the underlying process is stationary and ergodic.
The Gradient at each time ¢ of the log-likelihood function is:

o, 1 on &
0 S g 25
$(0)=75= 2h, 30 h, ) 2.3)

By law of iterated expectation we have:
E[s,(6)]=0 (2.6)
The Hessian at each time ¢ is given by:

o1, 1 ok, 1 0h dh g’
(~—— )—,{——]— , 2.7
200 h, 86" 2h 00" 21> 86 00' h,

H (0)=

Again by law of iterated expectation, we have:

1 Oh, Oh,
2h, 86 60'

E[H, (8}] = 28

Lumsdaine (1996) proves the consistency and asym;;totic normality of the quasi-MLE
by assuming a compact and convex parameter space along with a strict stationarity
and ergodicity condition for the GARCH(1,1) model, derived in D. Nelson (1990):

Elln(B +a-£M)]<0 29
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To have a well-defined finite second moment, I further impose a stronger restriction

as in Bollerslev (1986):

a+f<l1 (2.10)

One can easily verify that condition (2.10) along with the normality assumption of £,
is sufficient to derive condition (2.9) via Jensen’s inequality.

Since ¢, is normal, the log-likelihood function is correctly specified, which

implies the asymptotic result:

. A
TV*(6, - 6,)~N(0,1;") @.11)
Where 6, is true parameter value; I, is the information matrix evaluated at 6, :

8*1,(6)

I =-E
0 [aeae'

lo : (2.12)

By recursion and assuming the process extends infinitely far into the past, we have the

analytical result’:

Zﬁi—l
i=]
P 1S pie, ) 2.13)
i=l

i ﬁi_l ht—i
L i=1 B

Combine result (2.8), (2.12) and (2.13) to get the symmetric and positive definitive

information matrix:

"Fiorentini, Calzolari and Panattoni (1996) derive the first and second derivatives in GARCH models, which
include this specific result.
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E| = = (2.149)

N |

=~
(]

=
N

To avoid computing the expectation of a nonlinear form for each element in the
information matrix, I take a local approximation in the neighborhood around a =0
so as to take the denominator out®. Note here the interchange of the limit and
expectation operations is valid supposing each element is bounded on the parameter

space. I take the element /(1,1) for illustration purpose:

(iﬁi—l)Z }Zi—lg(iﬂi—l)z
limE| = | = f| /! = (lim

a0 h; lim h} a0
a—>

l-a-p)*, .. 2 i
Qe 2P im ELS 479D
) a0 p
(2.15)
Intuitively, when a is very small, 4, can be approximated by @ l—a-B" In
this way, we can deal with only the linear part on the numerators. It is easy to derive

the analytical expressions for the numerators of 7(1,1),7(1,2)and /(1,3). Next, I
show how to derive those of 1(2,2), 1(3,3) and 1(2,3).

® 1tis not unusual to see asmall @ in empirical work, which makes this approximation empirically relevant.
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23 The Derivation of A Closed from Information Matrix

To derive analytical expressions for the numerators of 1(2,2), /(2,3) and (3,3), we
need to work out the auto-covariance and cross-covariance structures for {£}},{h,}.

To see why, express out the terms:

E(iﬂi_lgz-;z) _ E(iﬂz(.—n 4 +2Z ZﬂHj -2 '2_‘ e, (2.16)

i=1 i=l j=i+l

E(i B h, ) E(Z BDR 4 22 Z Bk b)) (@2.17)
i=1

i=l j=i+1

EQ B e 23 B ) = B BVt b + 3 S B e +h el )]
i=1 i=1 i=1 i=l j=i+l .
' (2.18)

The derivation of the auto-covariance structures for {€2},{h} starts from the

ARMA(I ,1) representation for the GARCH(1,1) model’:
el =w+(@+ P -5 +w, —pw,_ (2.19)
Where innovation w, = h,(£/ —1) is a Martingale Difference Sequence (MDS):
E[w,|1_]=0 (2.20)

Where {I,} denotes the information filtration and ‘w, is adapted to I,.

Furthermore, notice that {A,} has an AR(1) representation:

h =w+(@+p)-h_ +aw,_

(2:21)

% Refer to Hamilton (1994) for a standard treatment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

Note that 4, isadaptedto 7, .

The assumption (2.10) implies a finite unconditional variance for &,:

Els?]= Elh]= IT;’—— <o, (2.22)

However, for the existence of a finite fourth moment, we impose one more restriction

for parameters as derived in Bollerslev (1988):
3a2+2af+ 2 <1 (2.23)

Under this restriction, we have:

30*(1+a+ f)
£'1=3Elh}]= 2.24
Be =300 )= e e ) (224)
And the following autocorrelations for both {¢’} and {h,}:
£2 a(l_aﬂ—ﬂz) 2 i-1 :
=——————— and p/ " =(a+p) p,i=23, 2.25
1 1—2aﬂ"ﬂ2 pt ( ﬂ) pl l ( )
pl=(a+p),i=12,- (2.26)

These autocorrelations have also been independently derived in Bollerslev (1988) and
Kristensen and Linton (2006). One can derive them following Harvey (1993,
Chapter 1). He and Terasvirta (1999) also work out the general fourth moment
structure of a squared GARCH process.

Manipulating by the standard formulas for expectation, covariance and variance,
summing up the geometric series, and plugging in the expressions for the second and

fourth moments, I obtained the closed forms of (2.16) and (2.17) (See Appendix B for
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details):
2 i a) »’ I+a+f) 28
E(Zﬁ Fo ) _(l—Zaﬁ—ﬂ")(l—a—ﬁ)[l—3a2—2aﬂ—ﬂ2+(l—/3)2]
(2.27)
E(iﬂi_,htyz o (rapt pUratf) | 2p
- -ap-p)t-a-p) 1-3a*-20f-p> 1-p
(2.28)

Lastly, to derive the analytical expression for (2.18), I transform the cross-covariance
between {¢} and {3} to known auto-covariance of {¢’} and {h,} by taking
advantage of the MDS property of w, (See Appendix for details).

These results, along with the previous work, allow us to derive the following

closed form expression for the numerator of 1(2, 3):

E(iﬂ ng—iziﬂ i_lh(—i)

_ o’(l+a+f) ( 1 L 3B
(-a-p)1-3a* 20 -p*)1-*) 1-af -’ 1-2af-p’

+ o’ B (2 __a+p fo )
1-a-B*0-B8H1-8 1-af-p* 1-2a8-8"

) (2.29)

To finish this section, I list the result for numerators of I(1,1), #(1,2) and I(1,3):

1
a-py

E[(iﬂ )= 230)

o 10 i-1 29 1 . @ E
E[;ﬂ leﬂ £ ]—(l_ﬂ)2 — (2.31)
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1 @

1-8) 1-a-p

E[i g i Bh 1= ( (2.32)

The above derivations result in a closed-form information matrix, taking the inverse

of which, I obtain the asymptotic variance-covariance matrix'’.

24  MONTE CARLO SIMULATION EXPERIMENTS

To evaluate how well this closed-form expression works, I carry out a sequence of
Monte Carlo simulation experiments. - The sample size is fixed at 7= 1000 and nine

sets of parameter values have been chosen for empirical interests:

1) 1 1 1 1 1 1 1 1
a {=[0.05}]0.10 ] 0.05 },{ 0.10 |,{ 0.05 },; 0.10 || 0.05 },; 0.10
B 0 0 0.2 j{0.2 )10.5 J{05 /108 Jl0.8

The information matrix based upon the simulations is computed by averaging the
realized information matrices écross the simulated data paths for each set of parameter
values. The number of simulations is set to be 100,000. Therefore, resulting
variance matrix is almost the true one with littte MC variation. Table 2.1 gives the
comparison for the variance-covariance matrix and show that my analytical formula

works fairly well, especially when « is small, regardless of the magnitude of £ .

25 CONCLUSION

In this paper, I gave an analytical formula to compute the standard errors for GARCH
estimates. The Monte Carlo simulation experiments demonstrate that this formula
works well, especially when a is small. This formula can be used in practice to
settle any discrepancy of estimated standard errors from various software packages.

It also shows analytically that the GARCH(l,1) model satisfies

1% Due to the lengthy algebra, the result is not displayed here but is available from the author upon request.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38
Zero-Information-Limit Condition defined by Nelson and Startz (2007), i.e., the
information for the GARCH estimate ﬁ approaches zero as the ARCH parameter

a goes to zero. ZILC implies that the information of ﬁ tends to be overestimated

when o is small and the routine test will fail to report a correct size, as shown to be

true in Ma, Nelson and Startz (2007).
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Table 2.1. Comparison of the Asymptotic Variance-Covariance Matrix (Total difference is the sum of the absolute difference)

Parameter Closed-Form Expression Numerical Evaluation Difference of Total
Values Variance Matrix S.E. Variance Matrix S.E. S.E.in % ‘Difference

w 1 0.3990 0.0000 -0.3772 0.6317 0.4418 -0.0003 -0.4177 0.6647 5.23%

a 0.05 0.0009  -0.0009 0.0300 0.0014  -0.0009 0.0370 23.32% 33.78%
B 0 0.3592 0.5993 0.3977 0.6307 5.23%

w 1 0.0990 0.0000 -0.0873 0.3146 0.1224 -0.0004 -0.1080 0.3499 11.20%

a 0.1 0.0008  -0.0008 0.0282 0.0017  -0.0009 0.0412 46.11% 68.49%
B 0 0.0794 0.2817 0.0981 0.3132 11.19%

w 1 0.6007 0.0047 -0.4536 0.7750 0.6427 0.0062  -0.4868 0.8017 3.44%

o 0.05 0.0010  -0.0045 0.0316 0.0014  -0.0058 0.0369 16.77% 23.94%
B 0.2 0.3447 0.5871 0.3709 0.6090 3.73%

w 1 0.1631 0.0024 -0.1147 0.4039 0.1855 0.0037 -0.1321 0.4307 6.64%

o 0.1 0.0010  -0.0026 0.0316 0.0017  -0.0039 0.0412 30.26% 44.64%
B 0.2 0.0830 0.2881 0.0963 0.3104 7.74%
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Chapter 3: Valid Inference under Weak Identification in Models Where the
Zero-Information-Limit-Condition Holds

By Jun Ma and Charles R. Nelson
3.1 Introduction

A number of econometric models of importance in practice have representations of the

form
yi=preg(f,x)+A'z+¢,y #0 3.1

where y and [ are scalar parameters, y, x and z are data, A is a vector of regression
coefficients, and &, is a homoskedastic error with variance o’. Examples include

certain non-linear regression models such as production functions, the Phillips curve
model of Staiger, Stock and Watson (1997), and, perhaps less obviously, ARMA and
GARCH models, and Unobserved Component models used to separate trend and cycle.
Note that y controls the amount of information that the data contain about 8 that is
identified only if y is non-zero. Models of this form satisfy the ‘Zero Information

Limit Condition’ (hereafter, ZILC) of Nelson and Startz (2007) which requires that the

reciprocal of the asymptotic variance of ML estimator ,3 , denoted by 7., approach

zero as y approaches a critical value. Suppressing z for simplicity, one readily obtains

- the following expression for the information that the data contain about

o Dgled () - gieg)’]
Iﬁ—Vﬂ _;_—2-' Zgz Y 4

%0 (32
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where g, denotes g( B, x,.)and g,' its first derivative with respect to f. Clearly,

1 ; 8oes to zero as y approaches zero, and thus ZILC holds for (1.1). NS show that

when ZILC holds inference based on the Wald statistic ¢=(f — B)e [ g's is problematic

for two reasons. One is that estimated information tends to be upward biased, the

relative bias being larger the closer is y to the ZILC point. The other is that the

numerator and denominator of the z-statistic are not independent as in classical regression,

but instead are functionally related. Consequently, although estimated standard errors
for ﬂ are typically too small, the associated f-statistic may be either too large or too
small, depending on the correlation between g, andg/. In this paper we consider only

models that are identified; nevertheless, spurious inference is a problem for values of

that are economically far from zero.

The purpose of this paper is to study a strategy for obtaining a valid test statistic for
B based on the expansion of g(f,x,) around =, which gives

Yi=r@hex)+(f-f)og' (B, X)) +e G.3)

where e, may incorporate a remainder term. In some models of practical importance
g(.) and g'(.) are simply data, for example the Phillips curve of Staiger, Stock and
Watson (1997) where y is the change in inflation, g=(x,+f) where x is the
unemployment rate and g is the unknown natural rate, and g’ is simply one. To

illustrate the potential for spurious inference, a simulated Phillips curve with independent

standard normal x, and ¢, 100 observations, and y = .01, the estimated standard error

for f from the non-linear regression routine in EViews™ has a median of about 2
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compared to the asymptotic value of 10. Paradoxically, the associated “t-statistics’ are
also too small, indeed no rejections at a nominal .05 level occur in 1000 replications! As

mentioned above, NS traced this apparent paradox to the dependence between the
estimated standard error and the estimation error (- ) in models where ZILC holds.
In the Phillips curve context an exact test of the null hypothesis f=f, is easily
obtained by making the substitution f=p0,+J in the model to obtain the linear
regression y, =y o(x,+f))+6+¢, where 6=pe9 . Since the null hypothesis

implies that @ =0 we test that null hypothesis and obtain a classical z-test with exact size.

More generally, we may expand g(.) around the value f,=f, and obtain the linear

approximation:
¥i =1 2 8(Bosx)+ (1 *(f = By)) o ' (Bos X)) +e; (34)

Thus, a test of the null hypotheses § = f, is obtained by regressing y on g(.) and its first

derivative (evaluated under the null hypothesis), then testing whether the coefficient of
the latter differs significantly from zero. The intuition is that if the null is true then the
first term captures the entire influence of B on the data and the second term should be
irrelevant, but if the null is wrong the second term gives an indication of how influential
on the model are departures from the null. In general (3.4) is only an approximation - as
for non-linear regression, Unobserved Components model, ARMA and GARCH models -

so the actual size of the #-test is a question to be investigated.

Section 3.2 presents the results of this investigation for a non-linear regression model,
and for ARMA (1,1), GARCH(1,1), and an Unobserved Components model. Section

3.3 concludes.
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3.2. Valid Inference in Four Weakly Identified Models
3.2.1. A Nonlinear Regression Model

We have shown above, using the Phillips Curve example, that the expansion of g(.) is
exact and so is the proposed test when the functional g(.) is linear in parameters. There
are, however, other models which take a direct form of (3.1) with, generally, nonlinear

g(.), such as the Hicks-neutral Cobb-Douglas production function we consider here:
yi=y-xP +e57#0 (3.5)

Where, y, and x, are per capita output and per capita capital input respectively; 7, in
its economic term, represents the technology component or, more broadly, the so-called
Total-factor productivity (TFP); econometrically, 5 controls the amount of information
data contains about [, the capital share of output.

Apparently this model satisfies the ZILC condition in NS and as a result, the
inference based on the Wald r-statistic is not correct due to both its understated
denominator and the dependence between its numerator and denominator. To illustrate

the spurious inference in this model we generate a path of x, from the log-normal
distribution and pair it with 1000 paths of simulated standard normal ¢,, both of 100

observations to compute y, with parameter values y =0.01, 8 =0.5. The estimated

standard error for ,[3’ from the non-linear regression routine in EViews™ has a median
of about 0.98 compared to the asymptotic value of 6.47. This underestimated standard
error together with the dependence between the numerator and denominator of the Wald
t-statistic gives about 0.11 rejection frequency for f at the nominal level of 0.05. This

is just another example where ZILC results in a failure of the Wald #-statistic.

To construct a valid test we may expand g(.), which is x” in this case, around the
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null B = f,, giving rise to the following regression:
y, =yex + 1exl log(x,) +e, (3.6)

Where A=je(f—/f,). Here the expansion is not exact but only approximate to the
first order as g(.) is not linear in S, and e, may include a remainder term. However,
the (3.6) is a classical regression once the regressors [x/,x/ log(x,)] are evaluated at

the null S, and the #-statistic for A is straightforward to compute and the inference of

it no longer functionally depends upon any other unknown parameter. Using the same
simulated dataset in the above MC experiment, we find that the ¢-statistic for testing the

null A =0 gives an almost perfect empirical size of 0.051 at a nominal level of 0.5.

3.2.2. The ARMA Model with Near Cancellation

Among models satisfying the ZILC condition there are some taking the form (3.1) in a
less obvious way. One simple example is the ARMA(1,1) model, known as, perhaps,

the most parsimonious way to capture the serial correlation:

(—¢L)y, =(1-6L)¢,;t =1,..,T

) (3.7
£, ~iid N(0,0;),i¢|<1|0|<1

Whereg is the AR coefficient, 6 is the MA coefficient. To relate the ARMA(1,1)

model with form (1.1), we may multiply both sides by (1-6L)™"' and expand terms out

to get:

yt =7'g(6,y¢_1)+5; (3‘8)
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Where, y =¢-6, g(0,y,)= Zei"y,‘,. and y,_,=(,4>V,2:-). NS show that

i=1
when 5 is small the standard error for either ;5 or O is severely underestimated and
this downward bias of the estimated standard error is fairly strong even after taking into
account the stationarity and invertibility requirement, resulting in a much overstated size
of the Wald ¢-statistic. The other important driving force of size distortion is the
dependence between the point estimate and its standard error, as shown for § here.

The concern of parameter redundancy in ARMA models traces back to Box and
Jenkins (1970) in which they urge people to scrutinize the necessity of higher ARMA
terms since obviously the order of an ARMA model can be increased arbitrarily by
adding the AR and MA terms with roughly the same root without violating the
restrictions imposed by real data. Although this concern was usually relieved by the
observation that this type of para'nieter redundancy typically makes little difference as far
as the forecasting is concerned, the significant difference will instead be made in terms of

its economic implications. For example, denote the GDP growth rate at time ¢ by y,

and assume y, follows an ARMA(1,1) process:

yt:lu+¢.yt-l+£t_6.£t—l (39)

Where, u is the average growth rate. The implied expectation for the growth rate will
then be governed by an AR(1) process:

Elya [I1=p+deEly |1 ]+y s, (3.10)

Where y =¢ -6 determines the size of underlying shock to the expectation process,
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and a higher ¢ implies any current shock to the economy lasts longer, increasing the

risk level of economy. The reliance on such a high level of persistence, so called long
run risk, to generate interesting results in a general equilibrium just starts to become
popular recently, for example see Bansal and Lundblad (2002), Bansal and Yaron (2004),
and Gavin, Keen, and Pakko (2006). However, from a statistical point of view, when
the underlying shock has a small size as is true in many cases, one might need to be very
careful to draw any conclusion for the persistence level solely based on the, likely wrong,
routine inference.

To investigate how the proposed valid test performs for, say, 6 in this model,

expand g(.) in (3.8) around the null 6,:

V. =198(64,5_ ) +Aeg,(64,¥,)+e, (3.11)

Where g,(6,y,,) = @(—g’;—‘-“—) =Y (i-1)00y,,and A=y e(6-6,). Testing the
i=2

null 4 =0 will be equivalent to testing the null 6 =6,,.
In practice, to evaluate the regressors [ g(6,,¥,.;), 846y, 7,.1) 1, We cannot observe
y, back into the infinite past, a standard technique is to set y, =0 for all#<0. This

makes negligible difference as long as the stationarity and invertibility conditions are
satisfied. Again (3.11) mimics a classical regression and the inference for A is exact
in finite sample given normal shocks and can be well approximated otherwise. To see
how this test corrects the spurious inference resulting otherwise from the routine Wald
t-test, we simulate 1000 data paths each of sample size 7 = 100 with
$=0.01,6 =0,6, =1 in Eviews™. Although the usual inference based on the Wald

t-test for 6 fails to cover the true value about 50.1% of the time, our proposed linear test

based on (3.11) does correct for this spurious inference and gives 4.9% rejection

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

frequency, roughly its nominal level 5%. Notice here since 6 =0 testing A =0 is
simply testing the second lag in the AR(2) model, which is equivalent to the Q-test with
one lag for the residuals from the AR(1) estimation. In general, this equivalence is not

necessarily true though.
Despite the brevity of testing MA root 6, a valid test forg = ¢, requires some extra

efforts. To see why, duality gives a representation of the ARMA(1,1) similar to (3.8) but

parameterized intermsof 3 and ¢:

Y, =reg(d.e, ) +e, (3.12)

Where the functional form g(.) remains the same but the argument becomes the

unobserved variable & instead of data y : g(4,£_)=> ¢"'s, and
i=1

Et—l =(81—l’6t—23-'-)°

However, as long as a consistent estimate for £ can be found, the valid test for

A =0 in the expansion of (3.13) is still feasible to compute in the following regression:
Y =7°g(¢0’51-1)+/l'g¢(¢o,5¢-1)+e, 3.13)

0g(#,£..)
o¢

One way to consistently estimate & so as to evaluate the regressors in (3.13) is to

Where g¢(¢,‘§t—l) = = i(l '—1) .¢i—28t—i ’ and A= ye (¢ "¢0) .
i=2

estimate the model by imposing the null ¢ =4, first, and then compute & using the

estimates. If the null is true, £ will be a good approximate for £. The other
equivalent way to implement the test is to replace & with restricted estimates and data

y via inherent transformation. Several steps of manipulation results in (see Appendix
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C.1 for details):
y=yeg0,5.,)+Ae[7 g4, 5,) -7 80,5, ) +e, (3.14)

Where, 7 and 6 are the estimates from ARMA(1,1) subject to the restriction ¢ =g, .
Both approaches give the same numerical test statistic as confirmed in the MC

experiment implemented. Data is generated in Eviews™ with true parameter

valuesy =0.01,§ =0,0, =1 and sample size T = 100, an& the proposed test statistic

rejects the null 54 times in 1000 replications, roughly at its nominal level 0.05.

This valid test based on the expansion of functional g(.) is straightforward to be
generalized to deal with a potential spurious inference in estimating an ARMA model of
higher order with near-identical roots. With multiple AR and MA roots an ARMA
model is weakly identified if any pair of AR and MA roots is sufficiently close to each
other.

For illustration purpose, consider an ARMA(2,1) model with real roots:

1-4L)Q-9¢,L)yy, =(1-6L)¢,;t =1,..,T (3.15)
g, ~iid N(,02),|¢ [<L]|¢, I<1]0]<1

When either one of the two AR roots is close to the MA root or both are, this model is
weakly identified and the usual Wald t-test is problematic. For example, if data is
generated with parameter values ¢, =0.5,4, =0.01,6 =0,0, =1 of sample size T = 100,
t-test for the MA root from routine estimation has an empirical size as large as 52.4% at a
nominal level 5% with 1000 replications in Eviews ™.

To implement the valid test strategy, first write (3.15) into the general form:
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(-¢L)y, =(1-4L)y +g(6,y,.,)]+¢, (3.16)

Where g(.) is defined as above and y =4, —6. Take an expansion of g(.) around the

null to get, after several steps of manipulation:

Y =a '[(1_90[')—1)’:—1]'*'0‘2 0[(1—00L)'1y,_2]+/10[(1 —OOL)*Zy,_3]+e, (3.17)

Where, a, =y +¢,, a,=—¢,¢(6,+y), and 1=¢ ey e(6—-6,). Again the valid
test statistic for the null 6 =6, is the t-stat for A in this linear regression (3.17). Just
to find out how this test performs in finite sample, we simulate data of sample size 7 =
100 with ¢, =0.5,4, =0.01,6 = 0,05 =1 in Eviews™. Our proposed linear test based
on (3.17) gives 5.2% rejection frequency for testing the null 6 =0 in contrast to the
large size distortion based on the usual Wald ¢-stat.  Notice here since 6 =0 tesﬁng
A =0 is simply testing the third lag in the AR(3) model, as is true for the simple
ARMA(1,1) model. Likewise, to test the AR root, take advantage of duality and use the

restricted estimate &, just as have shown for the simple ARMA(1,1) model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

3.2.3. The Unobserved Component Model for Trend and Cycle Decomposition

The decomposition of real output into trend and cycle has been of a great interest.
However, in literature two widely used parametric methods, namely Beveridge-Nelson
decomposition (hereafter BN) by Beveridge and Nelson (1981) and the Unobserved
Component model (hereafter UC) proposed by Harvey (1985) and Clark (1987), produce
surprisingly different estimates for trend and cycle. BN decomposition typically
attributes most output variation to trend but UC model usually concludes with much
larger amplitude of cycle. Morley, Nelson and Zivot (2002) provide an insightful
reconciliation of this seemingly difference. Here we provide another potential
resolution of this puzzle based upon our ZILC findings.

In a UC model, real output is explicitly expressed as a sum of the trend and cycle
components which are treated as state variables, the Kalman filter is adopted to obtain the
maximum likelihood estimate and the trend and cycle can be extracted afterwards based
on the estimated hyper-parameters. Consider the following simple UC 'éetting-up for

modeling the real GNP y, :

Y, =1, +c, (3.18)
T, =7, +p+7,.7, ~iidN(©O,0]) (3.19)
(1-¢L)c, = ¢,,¢, ~iidN(0,62) (3.20)

Where 7, and ¢, are unobserved trend and cyclq, respectively. Trend is simply a

random walk with a constant drift (drift itself may be random as well) and the cycle is
AR(1). Nelson (1988), in a MC experiment, shows that even if there is no cycle

variation (o =0), the UC model assigning most variation to the cycle appears to fit

better, which is just another example of the Dickey-Fuller (1979) Phenomenon.

Here, we are concerned with the case when cycle variation is not strictly zero but
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small, i.e., 0'82 >0 butsmall. We show below that the inference of parameter estimate

¢ dependson o and is problematic when o is close to zero.

The above UC model implies a reduced-form ARIMA(1,1,1) for y,:
(- ¢L)Ay: =pu+(1- ¢L)TL tE g =YY — Gut—l (3.21)
Where, the identification maps the above parameters in the following way:

Yo =(U+¢)ol +20! +(1+ )0, =(1+67)0, (3.22)

V= —¢0': —ol —-(1+ Po,. = ~fo'? ‘ (3.23)

u

As clear from the above, there are more structural parameters than in the reduced form.

Therefore one restriction is required to identify the model. Typically it is assumed that

the trend innovation and cycle innovation are uncorrelated (o,, =0). Imposing this

restriction and along with the invertibility requirement, we solve for the unique 6:

o _(+80) +207 —\[[(+9)’ 0, +407]e[(-9)’ 0]

3.24
2¢a,f +20; @.24)

It is straightforward to see that ¢ —6 -0 as o’ — 0. Comparing this to the ARMA

case discussed in the above section well indicates that ZILC holds in this model with the

variance of cycle innovation controlling the amount of information data contains for
cycle amplitude estimate q3 if Gj is indeed small, little information is available for
estimating ¢ which may lead to a wide confidence interval and the resulting uncertainty

of filtered cycle estimate should be fairly large if one accounts for both the filter
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uncertainty and the parameter uncertainty as in Hamilton (1986). However, our ZILC

findings suggest that in this situation the standard error for ¢3 may be severely

underestimated and the resulting uncertainty band might be severely underestimated.

To illustrate a potential spurious inference in the scenario as discussed above, we

design a MC experiment with parameters u =O.8,¢=0,0‘: = 0.95,552 =0.05 and
sample size T =200. Notice here the cycle innovation is small (o’ =0.05) and the

true cycle amplitude is even zero, so most of the resulting output variation is due to the
trend component. We generate 1000 replications from the model (3.18)-(3.20) with the
above parameter values. Using routine estimation algorithm based on the Kalman filter,
the hyper-parameters are estimated and reported along with their estimated standard error.

Similar to the ARMA case, a standard ¢-test for ¢ rejects the null about 47.5% of the

time and there is even an unusual upward bias for ¢ (see Figure 3.1).

ZILC does not provide an explanation for this upward bias; but if one believes
continuity is not a bad assumption here, the Dickey-Fuller phenomenon (see Nelson

(1988)) might provide a good intuition. ZILC, however, indeed predicts the
underestimated standard error for ¢: the median of estimated standard error for ¢ in
the MC experiment is merely 0.30 compared with its asymptotic value 1.48. The
upward bias of ¢ and its underestimated standard error may lead people to believe the
cycle amplitude is large with quite confidence while actually it is zero. 4

This paper strives to provide a general approach to constructing a valid inference in
such a situation. The essential idea is to avoid .the functional dependence of the

information for q§ on the other parameter, say o.. Although the estimation of a UC

model involves more complications, the comparison with the ARMA model suggests a

shortcut of implementing the general valid test strategy in the following steps: first

impose the null ¢ =¢, and estimate all other parameters; secondly, take advantage of
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the inherent restriction (3.24) to compute the implied restricted estimate 0; lastly, resort
to (3.14) based on the reduced representation (3.21) of the UC component model to test
the restriction ¢=¢,. Using the same simulated dataset as in the above MC

expériment, this valid test strategy rejects the null about 44 times in the 1000 replications,

roughly at the nominal level 0.05.

3.2.4. The GARCH(1,1) Model with a Small ARCH Effect

Ma, Nelson and Startz (2007) show that ZILC issue is also contagious to the GARCH
(Generalized-Autoregressive-Conditional-Heteroskedasticity) model, the first order of
which being perhaps one of the most popular approaches in capturing time-varying

volatility for time series data. Despite a great deal of rich extensions, the archetypal

GARCH(1,1) model may be written:

e=:Jh, -&,& ~iid N(O,1) (3.25)
h=o+a-c4"+B-h,_, (3.26)

Although quite a few papers have established the consistency and asymptotic normality
for the GARCH MLE (see Bollerslev and Wooldredge (1992), Lee and Hansen (1994),
Lumsdaine (1996) etc.), there has not yet been a closed-form asymptotic variance matrix
available in literature until Ma (2007) derived one based upon a local approximation.
Ma’s result demonstrates that ZILC holds in the GARCH(1,1) model and the inference of
p, the so-called GARCH effect, depends on parame;ter a and is problematic when «

is small. An ARMAC(1,1) representation of the GARCH(1,1) model proves helpful:

el =w+(@+p) ¢ +w,—p- W, (3.27)
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where the innovation w, -—-8,2—h, =h, (£} —1) is a Martingale Difference Sequence
(MDS) with a time-varying volatilty. Ma, Nelson and Startz (2007) find that when «
is small, corresponding to a near-cancellation of AR and MA roots, the standard error for
ﬁ is underestimated and the dependency between the point estimate and estimated

standard error reinforces the delusion of a significantly strong GARCH effect even when

there is very little, and furthermore that there is an unusual upward bias of ,B indicating

a concentration of £ around a value greater than the true B, a robust result after

carefully dealing with potential bimodality of the likelihood function.  Their
investigation into the real data sets reveals that this issue is fairly relevant and justifies
further endeavors for an approach to correct for this type of spurious inference.

The valid test strategy proposed above may be extended to this not quite standard

context where the expansion has to be made in the variance term. For example, to test

the null hypothesis f = f5,, first realize (3.26) implies:

@ =2
h, = 1—:-[;+a-g(ﬂ, £.4) (3.28)

Where g(B8,£%,)=Y p"'e2, and &2, =(¢l,,€,,.). Take an expansion of g()
i=1

around the null and the complete model is given:

e=Jh £, E ~iid NOT) (3.25)
ho=c+a-g(By,EL)+A-g,4(f,,E",)+ remainder (3.29)

where, c=1wﬂ, A=ae(f-p,) ,and g,(B,&} )= (-1)-f7¢],. Asaresult,

- i=2
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the s-stat for A =0 in (3.29) is equivalently to test the original null g = f,. To see
how this test makes correction, we simulate data of sample size 7 = 1000 with
w=1,aa=001,=0 and the tstat for A =0 reports 76 rejections among 1000

replications in EViews™, in contrast to as large as 598 times of rejections based on a

routine z-stat for f. Notice since the expansion is on the variance, the ¢-stat for A4 is

no longer in a classical linear regression context as for ARMA case, which results in a
notable deterioration of its size but well within tolerance of usual standard.

Very often it is the sum a + f§ that is of a great practical interest, see e.g., Bansal
and Yaron (2004), since the implied volatility h, is governed by a particular AR(1)

process, with a + [ being the persistence measure:
h=o+(@+p)-h_+a-w_ (3.30)

Unfortunately, when o is small the estimated persistence @+ 8 shares the same

problem as that of f, that is, an upward bias along with an underestimated standard
error, leading to an artificially persistent pattern for h, fluctuating a great deal more than

the true one.

Since a + f corresponds to the AR root in (3.27) a comparison with ARMA model
reveals that a valid test for it inevitably requires one extra step due to the fact that the

expansion will be based on an evaluation using the unobserved variable. Denote a + f

by p and (3.26) may be equivalently written as:

t

0 —
hy=——+aeg(p,w,_) (3.31)
1-p
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Where, w,, =(W,,W,,,...). And an expansion of g(.) around the null p = p, is:
0] - . - .
h, = E +a-g(p,,w, )+ 4 -g,(py, W)+ remainder (3.32)

Where, ' =ae(p—p,). Again to compute the test statistic for A" =0, one can first

~

estimate the GARCH(1,1) model with the restriction a + § = p, and extract h, using
the restricted estimates to obtain a restricted estimate of w,. Alteratively, we can

re-parameterize (3.32) using the inherent transformation to get (Appendix C.2 gives

details):

e=[h, -&,& ~iid N(0]) (3.25)

ho=c +aeg(B,:)+ X o[@ ' g(p,,52,)-& 'g(B,2,)]+remainder (3:33)

To test the null hypothesis p = p,, one just need to evaluate the pseudo-regressors in
(3.33) using restricted estimates &,/ along with the null p, and re-estimate the

model to compute a ¢-stat for 4' =0. We simulate data of sample size 7 = 1000 with
®=1,a=0.0L,4=0 and the rstat for A =0 reports 69 rejections among 1000

replications, in contrast to 42.7%, the empirical size based on the routine ¢-test.

3.3 Conclusion

This paper shows that a number of important econometric models, seemingly unrelated,
share a common issue in testing a parameter of interest, derived from the fact that the
inference of it depends functionally upon another identifying parameter, the ZILC

phenomenon. In all cases where ZILC applies, the information is overestimated and the
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resulting standard ¢-test fails to report the correct size. We suggest a general approach to
obtaining a valid test in a linear approximation of the original model. By showing how
to implement this valid test strategy in various cases, we present the evidence that this
test performs fairly well generally, able to correct for the spurious inference which would

appear otherwise if based upon the standard -test.
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Figure 3.1 Histogram of 413 from the MC experiment of UC Component Model for
£ =08,¢=0,0; =09562 =0.05
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Chapter 4: Consumption Persistence and the Equity Premium Puzzle: A
Resolution or Not?

4.1 Introduction

It has remained a major challenge to address too high observed equity premium given
consumption properties, leading to so-called “equity premium puzzle” as pointed out by
Mehra and Prescott (1985). Recently, Bansal and Yaron (2000, 2004) propose a
resolution based on a small but highly persistent component in consumption named the
“long-run risk”, along with the Epstein-Zin (1989, 1991) recursive utility function.
Furthermore, Bansal and Lundblad (2002) show that this long-run risk can also
successfully resolve the “volatility puzzle”, a phenomenon found by Shiller (1981) and
LeRoy and Porter (1981) that equity prices are much more volatile than their dividends.
Despite success in explaining these asset pricing anomalies, the long-run risk in
consumption is hard to detect empirically as made clear by Hansen, Heaton and Li (2005).
Cochrane (2006) expresses his concern by stating “...without strong direct evidence for
the required long run properties of consumption growth, the conclusions will always be a
bit shaky...” This paper aims to evaluate this resolution of the equity premium puzzle by
directly addressing Cochrane’s concern if there is “strong direct evidence” for the highly
persistent component in consumption, in light of a recent finding about the botential
spurious inference in weakly identified models by Nelson and Startz (2007), Ma, Nelson
and Startz(2007), and Ma and Nelson (2007). It will be shown that the model adopted
to identify the high level of persistence in consumption growth expectation and volatility
processes is weakly identified. The resulting spurious inference might account for the
apparent resolution.

Numerous efforts have been made to tackle the equity premium puzzle, for example,
the habit-formation utility function by Constantinides (1990), Abel (1990), Campbell and
Cochrane (1999), etc. However, Mehra and Prescott (2003) point out the “effective”
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risk aversion in these resolutions are still unreasonably high. Weil (1989) finds that the
Epstein-Zin utility function is not much helpful to address the equity premium puzzle
given very little predictability in consumption growth!'. Note that Weil (1989) models
consumption growth using a two-state Markov-switching (MS) process which implies
only one period momentum in consumption predictability, in contrast to the continuous
ARMA-GARCH framework in Bansal and Yaron (2000, 2004) which has a potential of
capturing a small but persistent predictable component and the claimed high level of
persistence in consumption growth expectation and its volatility processes is the key to
their resolution.

In Section 4.2, I restate that a high level of persistence in consumption, the long-run
risk, has a potential of resolving the equity premium puzzle and it appears to be
empirically robust based on the routine estimation method. In section 4.3, I show that
the relevant model is weakly identified and the resulting spurious inference might
over-estimate the persistence size with too tight a confidence interval. With the help of
a valid inference strategy proposed by Ma and Nelson (2007) (Chapter 3 of this
dissertation), I correct the confidence interval for persistence level in this scenario and

my result casts a doubt on the existence of such long-run risk. Section 4.4 concludes.

4.2  How Persistence in Consumption Resolves the Puzzle

The analytical demonstration in this section is largely based on Bansal and Yaron

(20090), in which they model the consumption growth process as an ARMA(1,1) process:
(gm_ﬂ)=¢'(gl‘.u)+77m—v"71 (41)

where g, is real per capita consumption growth (continuously compounding) and 7, is

"' One applauded merit of Epstein-Zin utility function is that it allows for a separation of the risk aversion and IES
(Intertemporal Elasticity of Substitution) which are controlled by one single parameter in a typical CRRA (Constant
Relative Risk Aversion) utility function.
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a serially uncorrelated normal innovation but with time-varying conditional volatility

governed by GARCH(1,1) (see Bollerslev (1986)):

~ N(0,h
77t+l ( tz (42)
h =wo+a-n+p-h,_,
It is helpful to write out the implied state-space form of this specification:

(x:'ﬂ):¢'(x:-1".u)+1‘77; (43)
g =% Ty ~ N(O,h,)

h=0+p-h_ +a-w

t p t—1 t (44)

Mo = by + W,y
where x, = E,[g,,,] is the expectation of the next period’s growth rate conditional
upon the available information at time ¢. Clearly, the AR root ¢ determines how long
any current shock to the conditional expectation persists, and 7 =¢ —uv determines the
size of the underlying shock. Furtheﬂnore, the conditional volatility is allowed to be
time-varying, as opposed to Mehra and Prescott (1985), Weil (1989) and Cecchetti, Lam
and Mark (1990). Apparently, p =a+ [ measures how long any current shock to the
volatility process lasts and a determines the size of the underlying shockw, =n? —h,_,.
Using dividend data, Bansal and Yaron (2000) estimate both persistence measures ¢
and p to be very large with a fairly tight conﬁdence; interval. Bansal and Yaron (2004)

calibrate a similar model to consumption and dividend data by assigning very large

values to both ¢ and p. Along with the Epstein-Zin recursive utility, the model

generates a sizable equity premium consistent with the historical level with risk aversion

parameter no higher than 10, the upper bound imposed by Mehra and Prescott (1985).
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To continue the illustration, I lay out the analytical solution here but leave a sketch of

their derivations in the appendix D'%

Elr, -r,1=[1-6)P° +£P]‘0'; +[1-0)kQ*1-a’0’ -0.5-0} 4.5)
v

-7
1—%/ ’

where w  denotes the IES, 3 the risk aversion, and 6=
00~ Y ) (1-x($-7))
/W x, 1s an

-1
-5
1-x¢ 2(1_K1¢)2(1_K1.0)

approximation constant smaller than but close to 1. Here, r, is the market portfolio

constants P=1+x,7-

and Q=

retum and 7, is the risk free rate. From (4.5), the equity premium has three
contributions: compensation for the risk involving 0'3 , the unconditional variance of the
innovation in consumption growth level, compensation for the risk associated with &2,
the unconditional variance of the innovation in consumption volatility, and lastly the
convexity adjustment term involving o, the unconditional variance of the market

portfolio return which can be further given by:
o, =P o) +xl0* a’cl (4.6)

Equation (4.5) allows us to study the impact of pérsistent components to the equity
premium. The appendix D demonstrates that the multiplier term before 0'3 is

increasing in P for the considered range of preference parameters. As a result, by just

"2 Readers interested in more detailed derivations are referred to Bansal and Yaron (2000, 2004). They solve the
model both numerically and analytically but show there is no significant difference.
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increasing ¢ one can easily match any equity premium level. Similarly, increasing the
persistence level p in the volatility process helps increase the premium as well.

There are two points worth emphasizing. First, the Epstein-Zin recursive utility
specification is necessary to allow the persistence to have a significant impact. In the
standard CRRA specification, where j - =1 or 6 =1, the time-variation of volatility

would not be priced and no level equity premium comparable with the historical level can
be generated with a reasonably low risk aversion'>. Second, if the level of persistence is
not high enough, the Epstein-Zin utility specification generates no much higher equity
premium than the standard CRRA utility specification, which is what Weil (1989)
concluded. In the extreme case when consumption growth is i.i.d, the equity premium is

simply: }/-0'; , exactly the same result as would be with the CRRA specification.

Therefore, correctly estimating persistence measures is critical. From a statistical point
- of view, this is more about a correct inference than one single point estimate.

Next, let us turn to a study of consumption data in search for an émpirical evidence of
the long-run risk. There are a few reasons why I want to focus on the consumption data
instead of equity cash flows: first, note most classical literature on the equity premium
puzzle does so, see Mehra and Prescott (1985) and Weil (1989) etc.; secondly, for the
model considered in this resolution, consumption and dividends share the same persistent
component and the differentiation of them considered by Bansal and Yaron (2004) is not
essential to the resolution; lastly, dividends are not accurately measured since observed
dividends typically include only cash dividends and have to ignore the other forms of
payments. Furthermore, it is not trivial to apply an appropriate seasonal adjustment
procedure to raw dividends data without introducing artificial serial correlation.

The quarterly real per capita personal consumption expenditure of nondurable goods
and service from 19471 to 20051V is obtained from the Bureau of Economic Analysis
(BEA). The frequency of quarter is chosen to have a larger sample size than that of the

13 See Appendix D for algebraic details.
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annual data, while avoiding the seasonality issue of monthly data, as discussed by Wilcox
(1992). The consumption growth rate is annualized by continuously compouhding.
The average growth rate is 2.1% and the annualized standard deviation is 4.0%, both
slightly higher than 1.8% and 3.6%, the numbers in Mehra and Prescott (1985) for the
sample period of 1889 — 1978. A

First an ARMA(1,1) is estimated and the point estimates along with their White

Heteroskedasticity-Consistent standard errors are reported below:
 21=0.021(0.002)  =0.78(0.15) 7 =0.15(0.06)

Notice that z seems to be significantly greater than 0. Formally, the hypothesis test
for H,:7 =0 is nonstandard since the AR and MA roots are not identified under the

null. Iimplement the supLR test proposed by Andrews and Ploberger (1996) and obtain
a test statistic of 16.37, far exceeding fhe 5% critical value. This is well expected since
the first aﬁtocorrelation for consumption growth is 0.23, significantly positive. More
importantly, the persistence measure has a point estimate 0.78 with a 95% confidence
interval [0.58, 1.08], implying a fairly high level of persistence.

Fitting the residuals from the above estimation into the GARCH(1,1) model, I report

the point estimates together with the Bollerslev-Wooldrige robust standard errors'*:

@=1.43x107(1.40x107) p =0.96(0.04) a =0.11(0.05)
First, there is clearly some serial dependency in the conditional volatility and the first

autocorrelation of the squared residuals is 0.22. Since a test for the hypothesis a =0

is nonstandard, I implement the supLR test proposed by Andrews (2001) and the null is

' 1 separately estimate the level and volatility processes to facilitate ensuing analyses and this procedure is robust to a
potential misspecification of GARCH as we will challenge its validity in the next section.
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rejected significantly at the 5% level. Secondly, the persistence measure p has a point

estimate as high as 0.96 with a 95% confidence interval [0.88, 1.04]. So there also
seems to be a large and significant GARCH effect, resulting in an extremely high
persistence level in volatility. |

Given that the confidence interval for persistence level identified above implies the
existence of a highly persistent component in consumption, the so-called long-run risk, it
is not surprising to find that a relatively high premium is requested by the agent. Using
the above point estimates, an equity premium of 6.2%, comparable with the historical
level, can be generated by assigning the following values of preference

parameters: y =10, =2 >, Each Risk involving level risk and volatility risk

contributes about half respectively. Furthermore, a risk free rate as low as about 0.8%
can also be simultaneously replicated by setting the discount factor ¢ =0.966.
Table 4.1 describes the variation of equity premium at different persistence levels, for

fixed preference parametersat at y =10,y =2. Two features are sparkling: first, equity

premium is increasing in persistence level in a much faster pace as one moves into the
area of higher level of persistence: in the area of low level of persistence, even an
increase as large as 0.6 in both level and volatility persistence increases the equity
premium only marginally (by merely 0.53%); by contrast in the area of high level of
persistence any small increase in persistence triggers a fairly large jump in the equity
premium. This observation may well be aligned with the analytical solution (4.5) where
the equity premium is not only increasing but convex in both persistence measures.
Secondly, the equity premium tends to explode if either the level or volatility turns out to
be non-stationary.

From another perspective, Table 4.2 shows values of risk aversion parameter

required to match the historical equity premium level at about 6% corresponding to

'3 The risk aversion parameter is set at the upper bound imposed by Mehra and Prescott (1985); IES is set at a value
well within the reasonable range as estimated by Hansen and Singleton (1984). Note, however, that there has been
extensive debates on estimating IES, see e.g. a recent study by Yogo (2004) which claims that [ES is rather far smaller
than 1. It is important to note that the resolution discussed here depends critically upon that the IES is greater than 1.
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various persistence levels within the 95% confidence interval identified above. If there

is no persistence at all, 7 needs to be as high as 40. But even for the loWer bound here,
7 isreduced greatly to 21.

These two exercises illustrate that a very high level of persistence helps resolve the
equity premium puzzle and, if the confidence intervals for ¢ and p identified above
are correct, the puzzle would not seem as firm as before. Unfortunately, as we
scrutinize the above ARMA(1,1) and GARCH(1,1) estimation result, both 7 and &
are small, which suggests that the models are weakly identified. In the next section, I
will show this may result in spurious inference for ¢ and p and we need to address

this issue using a valid inference strategy.

4.3 Obtaining a Valid Inference for Persistence Measures

Nelson and Startz (2007) show that when identification of one parameter is conditional
on another inference for the former will be misleading if the Zero-Information-Limit

Condition (ZILC) holds. The ARMA(1,1) is illustrated as one example where the
standard error for either ¢ or v tends to be understated when the identifying parameter
7 =¢—v is small. Ma, Nelson and Startz (2007) further find that ZILC holds in
GARCH(1,1) as well and the standard error for either p=a+f or [ tends to be
underestimated when the identifying parameter « is small. What is even worse is that
the estimated standard error is typically negatively correlated with the point estimate,
which might reinforce the illusion of a very high level of persistence while actually there
is very little. ’

To give a fresh picture about how misleading the routine estimation could be when
models are weakly identified, I present two simple Monte Carlo (MC) experinients here,
for ARMAC(1,1) and GARCH(1,1) respectively. Interesting readers are advised to obtain
more details in Nelson and Startz (2007), and Ma, Nelson and Startz (2007). In the first
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experiment, | simulate 1000 paths of data {g,} according to equation (4.1) with
parameter values ¢ =0,0 =-0.15 ', implying no persistence at all in the growth
expectation, with a simplification of standard normal 7, and x=0. The sample size

T =236 is chosen to match that of the quarterly consumption data. The coverage

probability of 95% confidence intervals for ¢ constructed from the standard estimation
algorithm turns out to be only 72.6%, with a MC variation of 1.4%. Similarly, I carry
out the second experiment for GARCH(1,1). 1000 paths of data {n,} are simulated

according to equation (4.2) with sample size T = 236 and parameiers
o=1La=0.11,8=0, implying there is only a modest persistence (o =0.11). The
coverage probability of 95% confidence intervals for p is 49.6% with a MC variation’

of 1.6%, even much worse than the ARMA case. Furthermore, the point estimate p

has a large mass near unity and its median is as high as 0.7, thé' phenomenon of an
upward bias which seems unique to GARCH model. |

The results from MC experiments show that, in presence of weak identification, even
if the underlying true process does not embody a high level of persistence or the long-run
risk, the routine estimation algorithm, however, might find one and tends to overstate its
significance. A pertinent question is how to obtain a valid inference for the persistence
measures in the presence of weak identification? Built upon Nelson and Startz’s (2007)
work, Ma and Nelson (2007) suggest taking a linear approximation of the original
nonlinear model and implementing a -test in it as a valid inference strategy when the
model is weakly identified. Their work discusses in detail why and how this works
nicely for a general class of models including ARMA and GARCH. As we will see
shortly, this test can indeed obtain a correct size while a routine #-test fails to do so when
the model is weakly identified.

'8 Nelson and Startz (2006), and Ma, Nelson and Startz (2006) find that the identifying parameter is not subject to
ZILC and thus is well estimated. Therefore, we use the estimated value as a good approximation of the underlying
true identifying parameter to generate the data.
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To implement this test strategy for the persistence measure ¢, write out a general

form for ARMAC(1,1):

gr =1 'f(¢sﬁ;—1)+77; (47)

where g{ =& H f(¢9 ﬁt—l) = Z¢i_lnt—i ’ ﬁt—l = (’7:-1 ’ 77:-2 2t ‘) ° and nt is
i=1

uncorrelated but allows for a possible but unknown heteroskedastic structure. In the

first step, the ARMA(1,1) is estimated by imposing the null H,:¢ =¢,, resulting in
restricted estimates U and 7 =g, -0 . In the second step, a linear approximation is

taken, leading to a linear regression with transformed regressand and regressors evaluated

at U and ¢,:

g =t f0.8.)+Af($),8.)~f(U,8. )] +res 4.8)

Where, A=10(¢—¢,), g,,=(g,,,2,,--). The resulting valid test for the null
hypothesis H,:4 =¢, is a classical #test for A =0 in the linear regression (4.8).
Intuitively, if the null is true the first term in (4.8) should be enough to summarize the
serial correlation in data.

To see if this test can correct for the spurious inference issue, I compute the test
statistic for each sample data in the first MC experiment. The coverage probability of
95% confidence intervals for the GNR #-test is 95.3%, very close to its nominal level but
in sharp contrast to the severe size distortion of the routine #-test. |

I apply this valid inference strategy to consumption data and compute‘the test robust
to unknown heteroskedasticity structure by adopting White’s (1980) consistent

variance-covariance matrix. Inverting this test numerically, I obtain Figure 4.1 which
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gives a valid 95% confidence interval for the persistence measure ¢ e (-1, 0.98), much

wider than the one obtained in the above section through routine estimation: [0.58, 1).
This finding is consistent with Dufour’s (1997) econometric insight that Wald-based test
statistic is problematic in weakly identified model and for locally almost unidentified
(LAU) parameters valid confidence intervals must have a non-zero probability of being
unbounded. In particular, the valid interval includes 0 but significantly excludes very
high level of persistence. Note that in the consumption growth data only the first
auto-correlation seems significant and large in magnitude, being about 0.2, fairly close to
the “Working” effect identified by Working (1960), i.e., the artificial serial correlation
due to aggregation,. This suggests that the small momentum in the aggregate
consumption data might be nothing but a statistical artifact.

Likewise, we can implement this valid test strategy for the persistence measure p in
the GARCH(1,1) model. In the first step, GARCH(1,1) is estimated by imposing the
null p=a+pf=p,, resulting in the restricted estimates @,&,8 . A general

representation for 4, may be written as:

h=—""+aef(p,%) (4.9)
1-p

where f(p,w,)=) p~'w,_, and W, =(w,,w,,,.). Alinear approximation is taken
i=1

on the variance term to get, after algebraic manipulations:

h=c+as f(B,i2)+Ae[f(py,ii2)~ f(B,TiP)] (4.10)

where A=ae(p~p,). The valid test for the null hypothesis H,:p = p, is the test

for A=0 in(4.10). Again, if the null is true, the third term in (4.10) cannot contribute
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to the variance significantly.

In MC experiment this valid test is computed and shown to cover the null 83.3% of
the time with 95% confidence interval, not perfect but much better than the routine test
which gives 49.6% coverage probability. Next I apply this test to residuals from
consumption data after eliminating the “Working” effect in level. Figure 4.2 gives a
95% confidence interval by numerically inverting the test statistics, robust to a potential
misspecification based on the Bollerslev-Wooldridge robust variance-covariance matrix

(Bollerslev and Wooldridge (1992)). The resulting confidence interval for p is [0,

0.98], not only much wider than the interval [0.88, 1.04] from routine inference (again
consistent with Dufour (1997)) but clearly includes 0 persistence.
Given corrected confidence intervals, it seems impossible to further pin down the

value ranges for persistence measures ¢ and p beyond the valid but wide ones above.

There does not seem to be direct empirical evidence in support of the existence of the
so-called long-run risk which is supposedly able to increase the equity premium
requested by economic agents. Instead, my finding that we cannot reject zero
persistence in both level and volatility supports the random walk assumption for
consumption, whose theoretical foundation traces at least back to Hall (1978) and a large
body of literature dealing with asset pricing is built upon this assumption, see Abel
(1990), Camipbell and Cochrane (1999) etc.

To check the robustness, I did a study and report briefly my findings about annual and
monthly ccnsumption growth data. The source of data is BEA. The sample period for
annual data is from 1929 to 2005 and for the monthly data is from 1959MO01 to 2005M12.
First, due to fewer sampling points for annual data, even the routine estimation gives a
quite uninformative confidence interval for ¢ [0.11, 1.17] at the 95% significant level
(but with a point estimate as large as 0.64) which, however, still disagrees with the
confidence interval [-0.78, 1) given by the valid test. Regarding the volatility process,
the routine test gives for p a much tighter confidence interval [0.85, 1.07], which
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differs much from [0.06, 1) the much wider one identified by the valid test. For
monthly data, what is odd and significantly different from both the annual and quarterly
data is that the first order auto-correlation turns out to be significantly negative. And
even the routine estimation fails to find a high level of persistence for growth expectation

with resulting point estimate for ¢ being -0.13, with a 95% confidence interval [-0.51,

0.25]). The wvalid test, however, gives three disjoint intervals (-1,
-0.90]U[-0.29,0.06]U[0.90,1), in which only the second part agrees roughly with the
routine one. For volatility persistence, routine estimation still gives an extrcmeiy tight
95% confidence interval [0.98, 0.99], which implies a very high level of persistence but
the valid one [0.02, 0.97] reveals that there is no such evidence.

Despite much evidence provided here and elsewhere to support that consumption
might simply a random walk as the classical Permanent Income Hypothesis implies, the
consumption growth expectation might be integrated as Barsky and Delong (1993)
suggest and interesting asset pricing implications can be derived from this. The valid
test would not be appropriate if the underlying growth expectation is truly integrated
(¢ =1) due to Dickey-Fuller’s (1979) work. To scrutinize this possibility I impose that
¢ =1 and resort to the Median Unbiased Estimator (MUE) of 7 proposed by Stock and

Watson (1998) to test the null z =0. The MUE is needed since Shepard and Harvey
(1990) fount that z is biased downward and has a large mass at 0 if one relies on usual
estimation method when the true ¢ is 1 but z is small. To carry out Stock and
Watson’s (1998) procedure, we need to impose a technical restriction that the innovations
to the expectation process and the cyclical shock are serially and mutually independent.
So we may rewrite equation (4.3) as:

g, =x,, +&,¢6 ~N(,0%)

[ ¢

(4.11)
X, =X +7T-7,,n, ~ N(O’O-Z)
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Table 4.3 summarizes the MUE of 7z with its 95% confidence interval. These results

unanimously fail to reject the null H,:7 =0. Finally, even if the argument that these

tests may have low power against a very small 7 leaves a possibility of the integrated
expectation alive, this would, however, explode the equity premium (see Table 4.1) for
any fixed level of preference parameters. From Table 4.2, it does seem that an

integrated expectation (¢ =1), in the limit, allows the risk aversion to approach 1. In
this scenario, however, the volatility would not be priced (6 — 0). More importantly,
the equity premium would be extremely sensitive to any small change of y , leading to

an “on-the-edge” solution.

4.4. Conclusion

In this work I show that a recent resolution of the equity premium puzzle based on the
long-run risk, a highly persistent component in consumption growth expectation and
volatility, depends critically upon a correct statistical inference of the persistence level.
The routine estimation method is not reliable since the employed model in this resolution
is weakly identified and this may result in spurious evidence for a high level of
persistence. A valid inference strategy is applied to this scenario and the valid

confidence interval reveals very little empirical evidence in support of this resolution.
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Table 4.1: Resulting Equity Premium (%) for Various Levels of Persistence

Preference parameters are fixed at: y =10,y = 2,8 =0.966

p=a+p
0 0.60 0.88 0.96 0.98
0 1.72 1.73 1.79 2.47 6.81
0.60 2.24 2.25 2.38 3.74 12.4
¢ 0.90 5.43 5.52 6.65 18.8 96.6
0.95 10.8 11.2 16.8 76.2 456.4
0.99 58.5 74.7 279 2472 16490

Table 4.2: Required Values of 3 to Match the Observed Equity Premium (about 6%) for
Various Level of Persistence; other preference parameters: w = 2,6 = 0.966.

p=a+p
0.88 0.92 0.96 0.98
0.60 21 18 13 8
¢ 0.80 15 13 10 6
0.90 10 9 6.5 42
0.99 1.8 1.7 1.6 1.4
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Table 4.3: Testing the Integrated Expectation Based on Median Unbiased Estimator at the
95% Confidence Intervals: Real Per Capita Consumption Growth Data

MUE of z (p-value) 95% Confidence Interval
Frequency: Annually
OLR 0.059 (0.21) [0, 0.328]
MW 0.000 (0.70) [0, 0.163]
Ew 0.013 (0.46) [0, 0.239]
‘ Frequency: Quarterly
OLR 0.010 (0.37) [0, 0.086]
MW 0.000 (0.89) [0, 0.029]
EwW 0.000 (0.51) [0, 0.071]
Frequency: Monthly
OLR 0.010 (0.14) [0, 0.049]
MW 0.008 (0.21) [0, 0.049]
EW 0.009 (0.16) [0, 0.049]

Note: QLR represents the maximum Fr statistic, see e.g., Quandt (1960), Andrews
(1993).
MW and EW denote, respectively, the mean and exponential Wald statistic in
Andrews and Ploberger (1994).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

Valid Inference for Lewel Persistence
i e S e o e e e e s i o o=

MN-test
1.5¢ ~-+~ 95% CV [}
—-%-— 95% CV
1} il
0.5 _
0O
o
8 of .
[/
2
e
0.5+ -
At -
1.5} .
B e e T D e T O T N S T T T T NI e

-1 08 06 04 -0.2 0 0.2 0.4 0.6 0.8 1
Lewel Persistence

Figure 4.1: The 95% Confidence Interval for Persistence Measure of Level Based on the
Valid Test
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Appendix A Zero-Information-Limit-Condition in the GARCH(1,1)
Model

A.1 A General Proof of ZILC

Ma (2007) (or see the second chapter), gives an analytical information matrix for the

GARCH(1,1) estimator (&, &, 8):

(4 B B
=P g cop (A.1.1)
20 B DE
Where, 4= L 5
a-m
B 1 ) w
1-p)° 1-a-p’
C= o’ 3A+a+p) L 2B |
(-2af- B Y1-a-p) 1-3a’ -2af-5> (1-B)’"
b o’ (1+a+f) N S N
(l-a-p)1-3a*-2aB-B*Y1-B%) 1-aBf-p> 1-2ap-p*
. o’ B (2 _a+p a \ ’
(i-a-p)’0-p) 1-4 1-af-p*> 1-208-p*’
" [(1+aﬁ+ﬂ2)(lta+ﬂ) 2 |

E=
(B )Y-af-F)Nl-a-P) 13’2085  1-p

The ‘information’ measure for ﬁ , defined to be the inverse of its variance by Nelson and

Startz (2007), is derived as:
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T 7. (1-a-p)* B’(2D-C-E)+A(CE-D")
I"(33) 20° AC-B®

Iﬁ(a),a,ﬂ)z

It is straightforward to show that

pd=a=p)’ . a-py

—#0 as a >0 (A.1.2)
2w 2w
2
AC-B2—+~L‘;’—¢0 as a—0 (A.1.3)
1-5a+p
However,

B’(2D-C—-E)+A(CE-D*)—0 as a —>0 (A.1.9)

This completes the proof of (1.4).
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Here we impose f =0 to demonstrate a few implications of ZILC in the GARCH(1,1):

S

AsyVar| &

=

The ‘information’ measure of f, again, approaches zero as a goes to 0:

Iﬁ (w7a7ﬂ) =

[0’ (+a) _o(1-3a?) ]
a’(l-a) a*(l-a)
(1-3a?) (1-3a?)
(+a)l-a) (+a)li-a)
(1-3a?)

a’*(l+a)l-a)T
(1-3a?)

@ has the same issue as shown in the following:

Ia-)(a),a,ﬂ)=

Furthermore, & and f are highly negatively correlated when « is small:

a’(l-a)T
o’ (1+a)

a’(l+a)l-a)

->0,asa—>0

—0,asa >0

Asy.Corr(®, f) = —1-3a* > -l asa =0

(A2.1)

(A.2.2)

(A.2.3)

(A.2.4)

However, @ is well identified in that its information measure does not converge to zero:

Id(w’a’ﬂ)=
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(A.2.5)
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Appendix B Derivations of Covariances

B.1  The Derivation of (2.27) and (2.28)

Using the standard formulas for expectation, covariance and variance, we have:
Elele 1= Cone/, &) + El &/ ]E[«E, i1
= pVar(s?) + (El}]) (B.1)
= p(ELe 1~ (El&/ D) + (EL]])’

t—l

Plug (B.1) into (2.16) and Sum up the infinite geometric series to get:

o 2
E(Zﬂ“‘e,-f) B 2P g yh st 14

1-p* 1-p°
_E[a,] 23 i-1
_]_ﬂ 1 ﬂ Zﬂ E[(;‘l tt

1E [;] 5 {Zﬂ‘”‘((a+ﬂ)"‘ 2 (Blet1- (Bl 1)) + (BLe? 1))}
_BEY, 2B e PEpame P e L
g g B s B D g Y )

(B.2)

Plug in the expressions for E[g'], p{?, and E[e}], one can end up with the result

(2.27). Likewise, one can derive the result (2.28).
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B.2 The Derivation of Cross-Covariance

By the MDS property of the innovation w,, we have:
E[Wt—l : ht—l ] = O = E[(gtz—l - hl-—l)ht—l] = O = E[gtz—lht—l] = E[htz—l] (B21)

Here, one needs to notice that h_, =w+a -2 +fB-h,_, = f(I,_,), thus is adapted to
the information set at time t-2. Since {/,} is an filtration associated with w,, we

have: ---21, o1, > . Apply the law of iterative expectation to get:
Elw_ |1_]1=E[w_|1,111,_]1=0,i=34,.--.

Therefore, we have result:
E[Wt—l : ht—i] =0=> E[(gf—l - hr—l )ht—i] =0= E[gtz—lht—i] = E[ht—lht—i]’i =23
In the same way, one can derive the result:

Elw,,.1=0= El(s;, —h,_ )6 1=0=> Elh_ &)= Ele/ 6/, ),i =23,
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Appendix C Transformation in the ARMA and GARCH Models

Appendix C.1 The Derivation of (3.14)

(3.13) is simply, in terms of lag operators:
y,=ye(1-@,L) " LE, + Le(1-¢, L) L’Z, +e,
Substituting £ =(1—g,L)e(1-6L)"y, into get:
y,=ye(1-6L) "Ly, + Ae(1-¢,L) " (1-6L) " [*y, +e,
By using the identity:
(-¢,L)" A-6L)" =[(1-¢,L)" —(1-6L) "o (¢, -0)"'L"
We have:

y,=ye(1-6L) "Ly, + A e[ (A—¢,L) 'Ly, -7 '(1-6OL) " Ly, ] +e,
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(C.1.3)



Appendix C.2 The Derivation of (3.33)

(3.32) may be equivalently written in terms of lag operators:
h,=c+ae(l-p,L)"' Lw,+ A (1- p,L) L*W, + remainder (C.2.1)
Where, W, =(1—p,L)(1-PL)" e&? —w(1-B)" and plugin to get:
ho=c +ae(l-BL) L&’ + A o(1-p,L)"(1— BL) " [*£? +remainder (C.2.2)
Using the identity similar to (C.1.3) to get:

h=c" +ae(l-pBL)y" Le? + A o[@ ' (1- p,L)" Le — &' (1- BL)™ Le?]+ remainder
(C.2.3)
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Appendix D Derivation of Equity Premium

The derivation of (4.5) starts with the Euler equation:

6 ,
Et[exp{elnﬁ“;gtﬂ +0rm,t+1}]=l (Dl)

The marginal rate of substitution (MRS) is given by:

6
m, = 01né - 8 T (l - e)rm,t+l (D2)
v
Adopting Campbell and Shiller’s (1988) approximation:
Vit =Ko T K12,y — 2, + 81y A (D3)

Where z, is the price-dividend (consumption) ratio; «,,x, are approximation

constants. The market portfolio return r,,,, is solved with the assumption of

L+l
log-normality. Equation (4.5) is then derived by following the classical formula in

Campbell (2000) and taking unconditional expectations:

m

Et (r 4+ —rf,m) =—C0V, (rm,t+l ’mt+l) -0.5- var, (rm,1+l) (D'4)
The risk free rate is given by:

E(rf)=—1n5+E(% +0.5-[(6 ~1)P? —%2]-03 +05-(0-Dc2Q%a’s?  (D.5)
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The multiplier term before 0',3 in (4.5) is a parabola in P:

~ 9 o &
A=OUP+ 35 = 1 g

] (D.6)

As in Bansal and Yaron (2000, 2004), I consider the following region of preference
parameters: 1<y <10, y >1, and yy >1 implying 6 <0. For this range of

preferences, P>1 with t >0, and (D.6) is monotonically increasing in P.

For standard CRRA case, when6 =1, (4.5) becomes:

E(r, —r,) ==0.5-[8" =280, (D.7)

where S =1+a(l-y) with a =—Tz—.

S

The multiplier term for o, becomes —0.5-(S~)* +0.5-y*, a parabola in S. . Since
for y >1, the case I consider here, S <1. For any given level of 7 >1, the maximum

equity premium is achieved when S=1, ie. when 7=0, the case of an iid
consumption process. As a result, GEU specification with 6 <0 is important to have

persistence play a significant role in generating the sizable equity premium.
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